SAMANCOR CHROME - MIDDELBURG FERROCHROME

Geochemical Analysis and Waste Classification of the CDR Slimes (Middelburg Ferrochrome)

Project Reference: 2020.001-17

WATER SYSTEMS MODELLING

Delta-H Water Systems Modelling PTY (Ltd) Contact: +2782 497 9088/+2772 506 1343 <u>info@delta-h.co.za</u> www.delta-h.co.za PO Box 11465 Silver Lakes, 0054 Pretoria, South Africa

5 October 2020

SAMANCOR CHROME – MIDDELBURG FERROCHROME

Delh. 2020.001-17

Geochemical Analysis and Waste Classification of the CDR Slimes (Middelburg Ferrochrome

Document Information

Report Version	Final Report
Reference/order Number	Delh.2020.001-17
Author(s)	J Zielke-Olivier, KT Witthüser
Document Reviewer	M Holland
Client Contact	B Mtsweni
Date	05/10/2020

Dr Martin Holland (Pr.Sci.Nat)

PRINCIPAL HYDROGEOLOGIST

Prof Kai Witthüser (Pr.Sci.Nat)

PRINCIPAL HYDROGEOLOGIST

TABLE OF CONTENTS

1.	Intro	oduction	. 4
2.	Core	Sampling	. 5
3.	Geod	chemical Classification Methodology	. 8
	3.1.	Geochemical Test Work	. 8
:	3.2.	Acid Rock Drainage Potential	. 8
	3.2.1	L. Acid-Base Accounting (ABA)	. 8
	3.2.2	2. Paste pH	. 9
	3.2.3	3. Sulphur speciation	. 9
	3.2.4	4. Carbonate neutralisation potential	10
	3.2.5	5. Net Acid Generation (NAG) test	10
	3.3.	Leach Testing and Waste Classification	11
3	3.4.	X-ray Diffraction (XRD) Analysis	11
4.	Geod	chemical Test Results	12
4	4.1.	Intra-Laboratory Quality Control	12
4	4.2.	Acid Rock Drainage Potential	12
	4.2.1	L. Paste pH results	14
	4.2.2	2. ABA results	14
	4.2.3	3. ABA results under consideration of sulphur speciation	15
	4.2.4	ABA results under consideration of carbonate speciation	16
	4.2.5	5. NAG test results	18
	4.2.6	5. NAG test results under consideration of sulphur speciation	19
	4.2.7	7. Summary of ARD test results	20
4	4.3.	Mineralogical Analysis	21
4	4.4.	Leachate Chemistry and Waste Classification	22
	4.4.1	L. GN. R. 635 and 636	22
	4.4.2	2. SANS 10234 Hazardous waste classification	<u>29</u>
5.	Discu	ussion and Conclusion	31
!	5.1.	Comparison with previous assessments	31
!	5.2.	Recommendations	32
6.	Refe	rences	33
Ap	bendix	A (geo-sites)	34
Ap	pendix	B (Core logs)	37
Ap	pendix	C (Laboratory certificates)	38
Ap	pendix	D (Interwaste SANS 10234 Classification Report)	39

LIST OF FIGURES AND TABLES

6
7
4
5
6
7
8
9
0

Table 2-1: Summary description of core samples	5
Table 3-1: Waste type classification by total and leachable concentration thresholds (TCT and LCT) for landfill di	isposal.
	11
Table 4-1: ABA, NAG, S-Speciation results and Carbon content for the CDR Slimes samples and calculated NP, N	NP and
NPR values (duplicate sample results highlighted in grey).	13
Table 4-2: Major mineral composition of the CDR Slimes samples (XRD Analysis) (weight %)	21
Table 4-3: Totals (aqua regia digestion) concentrations for the nine CDR Slimes samples (exceedances highlighted) 24
Table 4-4: Total concentrations (aqua regia) for all cations (in mg/l) of the CDR Slimes samples.	25
Table 4-5: Leachate (distilled water 1:20 ratio) test concentrations for the samples (exceedances highlighted)	27
Table 4-6: Leachate (distilled water 1:4 ratio) test concentrations for the samples (exceedances highlighted)	28
Table 4-7: Summary table of waste classification results for the CDR Slimes samples	29

1. Introduction

Delta H (Delta-H Water System Modelling PTY Ltd) was requested by Samancor Chrome to conduct a geochemical study and waste classification according to SANS10234, GNR 635 and 636 to identify barrier requirements as per National Norms and Standards for the CDR Slimes dam at Middelburg Ferrochrome. The Samancor Middelburg Ferrochrome (MFC) facility was established in 1964 to produce Low Carbon Ferrochrome for use in the production of steel. During the production time, a process known as Chrome Direct Reduction (CDR) was employed, whereby chrome ore is brought into contact with finely divided coal at high temperature. Dust is formed a by-product from the CDR process, which is captured with water sprays producing a slimes material of high moisture content. In the 1990's, MFC disposed of this CDR dust, known as CDR slimes, at a constructed disposal area (approximately 4000 m²) located to the west of the MFC production facility. In 2015, MFC stopped manufacturing Low Carbon Ferrochrome.

Since 2011, Samancor Middelburg Ferrochrome (MFC) has been endeavouring to obtain regulatory authorisation for the closure of the CDR. As part of the closure process, three sampling campaigns were run to characterise the CDR Slimes material and for classification of the material in accordance with the procedures prescribed in terms of the National Environmental Management: Waste Act (NEM:WA) (Act No. 59 of 2008). A summary of the previous sampling campaigns is provided in the review report by Delta H (2019). However, these preceding assessments indicated that the geochemical characteristics of the CDR Slimes material are heterogeneous and vary both horizontally and vertically throughout the disposal site. This has resulted in unsuccessful attempts to obtain authorisation of the CDR closure thus far.

In this regard, a subsequent geochemical study was conducted by Delta H to broaden the geochemical data set of the CDR Slimes, establish the potential leachate quality, and make more informed decisions on the barrier requirements for the CDR closure. The scope of work for the geochemical characterisation of the CDR Slimes is defined in the RFQ 4500861662 and included the following:

- 1. Selection and collection of representative sample material
 - a. Nine (9) representative samples of the CDR Slimes were retrieved by Delta H
- 2. Static testing of collected material samples comprising of
 - a. Acid-Base Accounting (ABA) including sulphur speciation,
 - b. NAG tests,
 - c. Hazard classification according to SANS 10234 Globally Harmonized System of Classification and Labelling Chemicals (GHS) (i.e. to determine if a material is hazardous based on the nature of its intrinsic physical, health and environmental hazardous properties based on 16-point Safety Data Sheet (SDS),
 - d. Waste classification according to Government Notices R. 634, 634 and 636 (i.e. determination of leachable and total concentrations using Australian Standard Leach Procedure and aqua regia digestion, respectively).
- 3. Report including review and interpretation of static test results, hazard, and waste classification according to SANS 10234, GN R. 635 and 636.

Analysis of ABA, sulphur speciation, NAG tests and leach tests for the waste classification were conducted by SANAS accredited Waterlab (Pty) Ltd. Interwaste (Pty) Ltd laboratory was appointed to conduct the hazardous waste classification according to SANS 10234. The geochemical characterization is based on the geochemical data including the evaluation of the Acid Rock Drainage (ARD) provided by Waterlab (Pty) Ltd, determination of potential hazardous characteristics of the CDR Slimes samples by Interwaste (Pty) Ltd, as well as a formal waste classification in accordance to the NEMWA – Norms and Standards as specified in the Government Notices R. 634, 635 and 636 (Government Gazette No. 36784, 23/08/2013) pertaining to the National Environmental Management: Waste Act (Act No. 59 of 2008) by the Department of Environmental Affairs. The current technical memo summarises the results of these analyses.

2. Core Sampling

Window sampling was employed whereby nine (9) samples were collected from different layers of five geotechnical boreholes to characterise the heterogenous CDR Slimes material. Images of the recovered core for each borehole are provided in Appendix A. The boreholes were drilled with a push rig and retrieved in Shelby tubes (1 m tube length). The core was removed from the Shelby tubes and split into half. One half of each selected core sample was bagged, sealed, and tagged and submitted to Waterlab (Pty) Ltd. for geochemical analyses including the following:

- ABA, NAG, Sulphur speciation and paste pH;
- Distilled water extraction (leach tests with 1:4 solid to liquid ratio) with 15 metals, Hg, F, Cr(VI), TDS, Cl, SO₄ and NO₃;
- Distilled water extraction (leach tests with 1:20 solid to liquid ratio) with 15 metals, Hg, F, Cr(VI), TDS, Cl, SO₄ and NO₃;
- Aqua regia digestion with total concentrations for all inorganic cations including 15 metals, Hg, F, Cr(VI), Cl, F, NO₃, SO₄ and CN;
- X-Ray Diffraction (XRD); and
- Total organic and inorganic carbon content.

The other half of each core sample (bagged, sealed and tagged) was submitted to Interwaste (Pty) Ltd. for moisture content, particle size distribution and determination of organic components (PAHs, VOC, sVOC, TPH), organic contaminant screening and hazardous waste classification in terms of SANS 10234 as well as safety data sheet (SDS) compilation. A summary description of the nine core samples is given in Table 2-1 and borehole locations are indicated in Figure 2-1.

BH ID	Latitude	Longitude	Drill Depth (mbgl)	Sample Depth (mbgl)	Sample ID	Sample Description
MF01	-25.81045	29.48731	2.8	0-1	MF1 0-1m	Light grey filter cake
IVIFUI	-25.81045	29.48731	2.8	1-2	MF1 1-2m	Black filter cake
			5	0.5-1	MF2 0.5-1m	Black filter cake
MEOD	F02 -25.80970	29.48710		2-2.5	MF2 2-2.5m	Light grey filter cake
MF02		29.48710		3-4	MF2 3-4m	Contact zone of filter cake and weathered bed rock
MF03	-25.81115	29.48734	2.3	0.5-1.5	MF3 0.5-1.5m	Composite of grey and black interlayered filter cake
MF04	-25.81022	29.48667	1.8	0.5-1.5	MF4 0.5-1.5m	Composite of grey and black interlayered filter cake
MF05	-25.80933	29.48630	3	0.2-0.8	MF5 0.2-0.8m	Black and grey interlayered filter cake
				1-2	MF5 1-2m	Grey filter cake

Table 2-1: Summary description of core samples.

Figure 2-1: Overview map indicating sample locations and disposal areas.

Window sampling showed the presence of grey and black interlayered very fine grained to powdery filter cake. Typically, the ferrochrome fine dust is grey, while the black layers represent the coarse dust (Ma and Garbers-Craig, 2006). According to Ma and Garbers-Craig (2006), the fine grey dust mostly consists of agglomerated particles comprising oxide, metallic and carbon-based phases, while the coarse black dust mainly consists of oxide and carbon-based particles that are irregular in shape. The alternating grey and black layers varied in thickness from a few mm to several decimetre (Figure 2-2). The layering was inconsistent between the different profiles. A detailed log for each geotechnical borehole is provided in Appendix B.

Figure 2-2: Interlayered CDR Slimes material containing fine (grey) and coarse (black) ferrochrome dust.

3. Geochemical Classification Methodology

3.1. GEOCHEMICAL TEST WORK

The geochemical test work was carried out by Waterlab (Pty) Ltd and Interwaste (Pty) Ltd, SANAS (South African National Accreditation System) accredited laboratories and included the following:

- Acid-Base Accounting (ABA), Net Acid Generation (NAG), Sulphur (S)-speciation and Paste pH.
- Determination of total concentrations on solids using Aqua regia digestion with analysis for all cations including 15 metals, Hg, F and CrVI.
- Determination of leachable concentrations using distilled water extraction (for waste to be disposed of with non-putrescible waste) at a liquid-to-solid ratio of <u>1:20</u> with analysis for 15 metals, Hg, F, CrVI, TDS, Cl, SO4, NO₃ to enable a formal waste classification.
- Determination of leachable concentrations using distilled water extraction at a liquid-to-solid ratio of <u>1:4</u> to facilitate a more realistic estimation of source terms for the solute transport model (NB: The waste classification requires a liquid-to-solid ratio of 1:20, which accounts for dilution in the aquifer but is unrealistic for a transport model source term derivation).
- XRD mineralogy.
- Determination of organic components (PAHs, VOC, sVOC, TPH), organic contaminant screening and hazardous waste classification in terms of SANS 10234 as well as safety data sheet (SDS) compilation (Interwaste).

3.2. ACID ROCK DRAINAGE POTENTIAL

Acid rock drainage is a process whereby contaminants (especially metals and sulphate) are released from solid to liquid phase under acidic pH conditions due to the oxidation of sulphide minerals in the presence of oxygen (or other oxidants like ferric iron or manganese) and water, potentially accelerated by bacteria. Heat may be generated in the process. The term acid rock drainage is also used to refer to saline and neutral mine drainage, which are characterised by neutral to alkaline pH conditions and more moderate metal and sulphate contents.

The laboratory tests to determine the potential of rock samples to produce Acid Rock Drainage (ARD) are generally grouped into two categories: static and kinetic tests. The static tests are relatively simple, inexpensive and rapid, whereas kinetic tests may take several months. Kinetic tests are typically carried out if the results of the static tests are inconclusive or kinetic reaction rates (of acid production and neutralisation) are required for geochemical models.

The current test work reported upon here comprises of static tests.

3.2.1. Acid-Base Accounting (ABA)

Acid-base accounting (ABA) by Sobek et al. (1978) is a screening procedure whereby the acid-neutralising potential (assets) and acid-generating potential (liabilities) of rock samples are determined and the difference (net neutralising potential, equity) is calculated. It is a static procedure and provides no information on the rate with which acid generation or neutralisation will proceed. Reaction rates are usually determined by kinetic weathering or leaching tests. It must be noted that acid-neutralising (or buffer) reaction rates of most minerals (apart from the carbonates) are typically slower than the sulphide oxidation rates in the rocks.

ABA tests calculate the acid potential (AP) of a sample due to the theoretical oxidation of the total sulphur content of the sample to sulphuric acid. As the AP is usually expressed in kg CaCO₃ per tonne of rock, the conversion factor is 31.25 kg CaCO₃/tonne:

 $AP = \frac{\text{Sulphur content (\%) * 1000kg}}{100} * \frac{\text{molecular weight of } CaCO_3}{atomic weight of sulphur}$ $= sulphur content (\%) * 31.25kg CaCO_3 \text{ per tonne}$

The total sulphur content of a sample is hereby commonly determined by LECO. The AP can be converted into the Maximum Potential Acidity (MPA, expressed as kg H₂SO₄/tonne), which is commonly used in Australia by simply multiplying the AP with 0.98.

The neutralisation potential (NP) of a sample, mostly provided by carbonates hydroxides and silicates, is determined according to Sobek et al. (1978) by digestion of hydrochloric acid. The NP is expressed in kg CaCO₃ per tonne of rock but can be converted into the Acid Neutralising Capacity (ANC, expressed as kg H₂SO₄/tonne), used in Australia by simply multiplying the NP with 0.98.

It must be noted that this theoretical and widely used neutralisation potential does not necessarily represent the real neutralisation potential that would occur in the field as it is site-specific to environmental conditions, mineralogy, kinetic reactions and dissolution rates (Morin and Hutt 2001). Two key indicators are used to assess the risk of acid drainage:

1. The Net Neutralisation Potential (NNP) is calculated by subtracting the Acid Potential (AP) from the Neutralising Potential (NP):

$$NNP = NP - AP,$$

with negative NNP values indicating the potential to generate acidity and therefore a predicted net acid drainage water quality from the rock. Positive values indicate acid-neutralising potential or a predicted net alkaline drainage water quality from a rock sample, though some authorities (Canada) request NNP values larger than 20 before non-acid generation can be assumed.

2. The Neutralisation Potential Ratio (NPR) is calculated by dividing NP by the AP:

$$NPR = NP / AP,$$

with the following assessment criteria for a sample:

- NPR larger than 2 generally indicates non-acid generation (NAG), i.e. neutral or alkaline leachate, but in case of preferential exposure or reactivity of sulphides NPR larger than 4 is needed for complete acid neutralisation (Price et al., 1997).
- NPR between 1 and 2 is considered inconclusive or uncertain regarding acid generation.
- NPR below 1 indicates potentially acid generating (PAG) material.

3.2.2. Paste pH

As part of the ABA procedure according to Sobek et al. (1978), the paste pH of a mixture of the pulverized rock sample and distilled water (pH typically 5.3) is determined. The measured pH value indicates whether a sample was at the time of analysis acidic (paste pH<5), near neutral (5<paste pH<10) or alkaline (paste pH>10). Acidic paste pH values indicate a non-reactive or absent neutralisation potential.

3.2.3. Sulphur speciation

ABA assumes conservatively that all sulphur in the sample will react to form sulphuric acid, while in fact some of the sulphur may be present in non-acid producing sulphates (e.g. gypsum, barite), organic or elemental sulphur. If a significant part of the total sulphur occurs as sulphate sulphur instead of sulphide sulphur, the overall risk of acid generation is reduced. Furthermore, acid generation of samples with sulphide sulphur content below 0.3 % is considered short term (Price and Errington 1995, Soregaroli and Lawrence 1998) due to limited sulphur supply. The Sulphide Acid Potential (SAP) of a sample is then calculated according to:

 $SAP = Sulphide sulphur content (\%) * 31.25 kg CaCO_3 per tonne$

Following the determination of the SAP, the Sulphide Net Neutralising Potential (NNP-S²⁻) and the Sulphide Neutralising Potential Ratio (NPR-S²⁻) can be calculated to assess the acid generation risk under consideration of the sulphur speciation.

In general, the use of total sulphur for the determination of the maximum potential acidity is considered more conservative (Brady 1990), but is obviously overly conservative for oxidised ore bodies or materials.

3.2.4. Carbonate neutralisation potential

ABA assumes that the rate of mineral dissolution providing the Neutralisation Potential NP (carbonates hydroxides and silicates) is higher or equal to the rate of acid generation, which can realistically only be assumed for carbonate minerals like calcite or dolomite.

Furthermore, the equilibrium pH ranges at which hydroxides and silicates buffer (once the carbonate minerals are depleted) are typically lower than 6 (e.g. gibbsite < pH 4.3, ferrihydrite < pH 3.5) and therefore insufficient to maintain a neutral mine drainage.

The Carbonate Neutralisation Potential (CO₃-NP), based on the inorganic carbon content (IC) of a sample as an indicator of the presence of carbonate minerals (including iron and manganese carbonates) alone, is given by:

The following interpretations can be derived from a comparison of the two neutralisation potentials (Morin and Hutt 2001):

- CO₃-NP = NP: Neutralisation potential provided by reactive carbonate minerals.
- CO₃-NP > NP: Not all carbonate minerals are rapidly reactive (e.g. significant concentration of iron and manganese carbonates) or not all carbon is carbonate.
- CO₃-NP < NP: Non-carbonate minerals are major contributor to the neutralisation potential.

3.2.5. Net Acid Generation (NAG) test

Net acid generation tests directly determine the acid generating potential of sulphide minerals in a rock sample by oxidation with hydrogen peroxide (H_2O_2). Acid generation and acid neutralization reactions occur simultaneously, and the test provides therefore a net result of the amount of acid generated.

After complete oxidation of the sample, the final NAG pH is used as a screening criterion for the acid generation potential:

- NAG pH below 3.5 indicates a high risk of acid generation,
- NAG pH value larger than 5.5 indicates no risk of acid generation, and
- NAG pH value between 3.5 and 5.5 indicates a low risk of acid generation.

The supernatant of the test is titrated to a pH of 4.5 and 7.0 and the net acid potential in the form of kilograms of sulphuric acid produced per tonne of waste rock sample (kg H_2SO_4/t) calculated.

3.3. LEACH TESTING AND WASTE CLASSIFICATION

Leach tests are commonly used as a preliminary screening process to identify potential constituents of concern based on a comparison against relevant water quality and effluent standards or other specified limits. In the context of this study, the total and leachable concentrations will be used to classify the mine residues in accordance to the NEMWA – Norms and Standards as specified in the Government Notices R. 63, 635 and 636 (Government Gazette No. 36784, 23/08/2013) pertaining to the National Environmental Management: Waste Act (Act No. 59 of 2008) by the Department of Environmental Affairs. According to the Government Notices, the leachable concentrations are determined using the Australian Standard Leaching Procedure (AS 4439.3-1997, bottle leaching procedure) and the total concentrations using aqua regia digestion. The applicable leachable or total concentration thresholds used by the authorities to classify the waste into several categories are given in Table 3-1.

Total concentration threshold	Link between TCT and LCT	Leachable concentration threshold	Waste Type	Landfill design
< TCT0	and	< LCT0	Type 4	Class D
< TCT1	and	< LCT1	Type 3	Class C
< TCT1	and	< LCT2	Type 2	Class B
< TCT2	or	< LCT3	Type 1	Class A
> TCT2	or	> LCT3	Type 0	Not allowed

Table 3-1: Waste type classification by total and leachable concentration thresholds (TCT and LCT) for landfill disposal.

3.4. X-RAY DIFFRACTION (XRD) ANALYSIS

The sample material was prepared for XRD analysis with the aid of a back-loading preparation method. Diffractograms were obtained using a Malvern Panalytical Aeris diffractometer with PIXcel detector and fixed slits with Fe filtered Co-K α radiation. The phases were identified using X'Pert Highscore plus software. For the quantitative determination of amorphous content, the material was scanned after addition of 20 % Si and micronizing using a McCrone micronizing mill. The relative phase amounts (weight %) were estimated by the Rietveld method.

4. Geochemical Test Results

4.1. INTRA-LABORATORY QUALITY CONTROL

The analyses for sample MF5 1-2m (sulphur speciation, NAG pH, paste pH, AP and NP) was run in duplicate for internal quality control purposes by the laboratory and are highlighted in Table 4-1. To assess the data quality, the Relative Percentage Difference (RPD) of the analysis was calculated as follows:

$$RPD = \frac{|a-b|}{average(a,b)} * 100\%$$

The following criterions were used to assess the RPD values:

- RPD < 1% Excellent
- RPD < 2.5% Good
- RPD < 5% Average
- RPD > 5% Poor

The internal quality control showed an excellent (RPD < 1%) reproducibility of the following parameter:

- Total sulphur
- pH 4.5 NAG (kg H₂SO₄/t) and pH 7 NAG (kg H₂SO₄/t)
- Past pH
- Neutralisation Potential (NP)
- Net Neutralising Potential (NNP)

A good (RPD < 2.5%) reproducibility is recognised for:

- NAG pH 4.5 and NAG pH 7
- Neutralisation Potential Ratio (NPR)

An average (RPD < 5%) reproducibility is recognised for:

• Acid potential (AP)

A poor (RDP > 5%) reproducibility is recognised for:

- Sulphate sulphur
- Sulphide sulphur

While the observed poor reproducibility of the sulphide sulphur and sulphate sulphur content is obviously of concern, the actual differences between the two sulphide sulphur and sulphate sulphur analyses are minute (0.11 vs. 0.10 % and 0.01 vs. 0.02 %, respectively) and do not change the classification of this sample. The data are therefore considered acceptable for the purpose of the acid rock drainage assessment. No ionic charge balances were determined for the leach test analysis due to missing major elements (predominantly cations) in the leach test results, as they are not required for the waste classification process.

4.2. ACID ROCK DRAINAGE POTENTIAL

The ABA, sulphur speciation and calculated SAP, NNP and NPR values for the different CDR Slimes samples are summarised in Table 4-1 while the original laboratory certificates are provided in Appendix C.

Table 4-1: ABA, NAG, S-Speciation results and Carbon content for the CDR Slimes samples and calculated NP, NNP and NPR values (duplicate sample results highlighted in grey).

	Sample ID	MF1 0-1m	MF1 1-2m	MF2 0.5-1m	MF2 2-2.5m	MF2 3-4m	MF3 0.5-1.5m	MF4 0.5-1.5m	MF5 0.2-0.8m	MF5 1-2m	MF5 1-2m (duplicate)	RPD
	Lab ID	96716	96717	96718	96719	96720	96721	96722	96723	96724	96724 D	96724 D
UR	Total Sulphur (%)	0.04	0.84	1.65	0.97	0.05	0.63	1.18	0.80	0.12	0.12	0.0%
SULPHUR	Sulphate Sulphur as S (%)	0.04	0.63	1.57	0.89	0.04	0.58	1.15	0.74	0.11	0.10	9.5%
SU	Sulphide Sulphur (%)	<0.01	0.22	0.08	0.08	0.01	0.05	0.03	0.07	0.01	0.02	66.7%
7	Total Carbon (%)	1.59	49.20	25.90	2.46	0.67	1.96	4.06	18.40	1.17		
CARBON	Organic Carbon (%)	1.40	47.80	24.60	2.19	0.44	1.86	3.25	18.40	0.92		
AR	Inorganic Carbon (%)	0.19	1.40	1.30	0.27	0.23	0.10	0.81	0.00	0.25		
0	CO₃-NP (CaCO₃/t)	15.83	116.62	108.29	22.49	19.16	8.33	67.47	0.00	20.83		
	NAG pH 4.5	8.20	4.10	8.70	8.60	7.10	8.20	8.60	8.30	8.10	8.20	1.2%
NAG	pH 4.5 NAG (kg H ₂ SO ₄ /t)	<0.01	0.59	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	0.0%
Ń	NAG pH 7	8.20	4.50	8.70	8.60	7.10	8.20	8.60	8.30	8.10	8.20	1.2%
	pH 7 NAG (kg H ₂ SO ₄ /t)	<0.01	18.62	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	0.0%
	Paste pH	8.3	5.8	9.7	8.9	7.4	8.6	9.3	8.9	8.6	8.6	0.0%
Ŋ	Acid Potential (AP) (kg/t)	1.27	26.00	52.00	30.00	1.53	20.00	37.00	25.00	3.64	3.74	2.7%
ACCOUNTING	S ²⁻ Acid Potential (SAP) (kg/t)	<0.31	6.88	2.50	2.50	0.31	1.56	0.94	2.19	0.31	0.63	
Inc	Neut Potential (NP)	27.00	5.20	162.00	44.00	12.00	51.00	102.00	119.00	31.00	31.00	0.0%
Ŭ	Net Neut Potential (NNP)	25.00	-21.00	111.00	14.00	10.00	31.00	65.00	94.00	27.00	27.00	0.0%
ĒA	Neut Potential Ratio (NPR)	21.00	0.20	3.15	1.46	7.75	2.57	2.76	4.72	8.44	8.28	1.9%
BASE	NNP-S ²⁻	<26.69	-1.68	159.50	41.50	11.69	49.44	101.06	116.81	30.69	30.38	
Q	NPR-S ²⁻	<87.10	0.76	64.80	17.60	38.40	32.64	108.80	54.40	99.20	49.60	
ACID	NPR-CO ₃	12.46	4.49	2.08	0.75	12.52	0.42	1.82	0.00	5.72	0.00	
	NPR-CO ₃ -S ²⁻	<51.05	16.96	43.32	9.00	61.31	5.33	71.97	0.00	66.64	0.00	

4.2.1. Paste pH results

The paste pH range of most tested samples was circum-neutral (pH 7.4 to 9.7, Table 4-1) at the time of analysis, suggesting that most samples contain readily available alkalinity to buffer any acidity that may be released upon deposition or generally comprise low readily available acidity. Only sample MF1 1-2m had a slightly acidic pH of 5.8, indicating that this sample has potential to release readily available acidity during storage.

4.2.2. ABA results

The total sulphur content in the CDR Slimes samples ranged from 0.04 to 1.65% of which the acid generating sulphide sulphur content was generally low (≤0.08%) (Table 4-1). Only sample MF1 1-2m contained one order of magnitude higher sulphide sulphur content of 0.22%. The Neutralisation Potentials (NP) of samples MF1 0-1m, MF2 3-4m, MF5 0.2-0.8m and MF5 1-2m (and duplicate) exceeded the Acid Potentials (AP), resulting in positive Net Neutralisation Potentials (NNP). This together with NPR ratios larger than four (required for complete acid neutralisation), classifies these samples as non-acid generating (Figure 4-1). Although the NP exceeded the AP in samples MF2 0.5-1m, MF2 2-2.5m, MF3 0.5-1.5m and MF4 0.5-1.5m, these samples are classified as inconclusive and potentially acid generating if preferentially exposed due to the NPR being less than four. Sample MF1 1-2m is flagged as "long-term" acid generating based on the total sulphur content, low NPR ratio and AP exceeding the low NP leading to a negative NNP (Table 4-1, Figure 4-1).

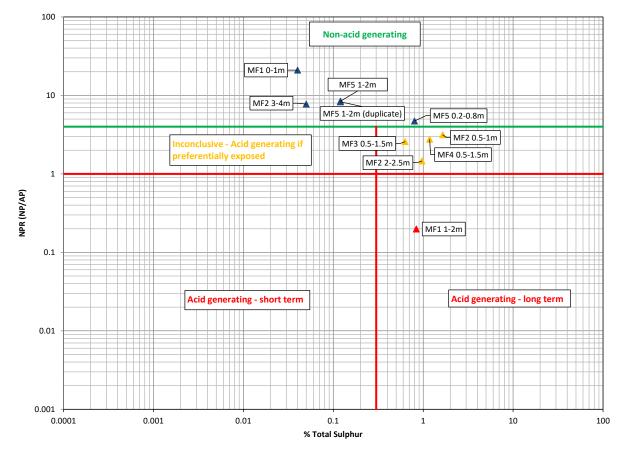
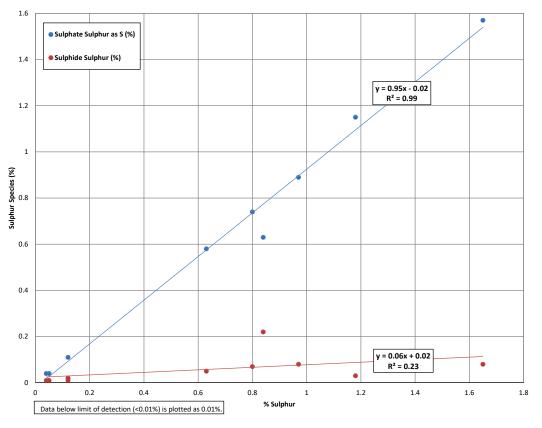
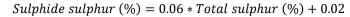




Figure 4-1: Neutralising potential ratio versus total sulphur content.

4.2.3. ABA results under consideration of sulphur speciation

The sulphur speciation results showed that in all the tested samples, 75% in sample MF1 1-2m to 99% in sample MF1 0-1m of total sulphur content occurs as non-acid generating sulphate sulphur. As stated earlier, the ABA methodology assumes conservatively that all sulphur in the sample will react to form sulphuric acid; while a significant part of the total sulphur may occur as non-acid producing sulphate sulphur, reducing potentially the overall risk of acid generation further. A plot of the sulphur species and total sulphur contents of the samples is given in Figure 4-2. While a strong correlation between total and sulphate sulphur contents ($R^2 = 99\%$) is recognised for the tested samples, only a poor correlation between the total and sulphide sulphur content ($R^2 = 23\%$) is evident. Since the regression line indicates a poor correlation for sulphide sulphur, it should not be used to estimate the sulphide sulphur content of the samples. However, the analysis showed that most of the total sulphur content of the samples occurs as non-acid generating sulphate sulphur.

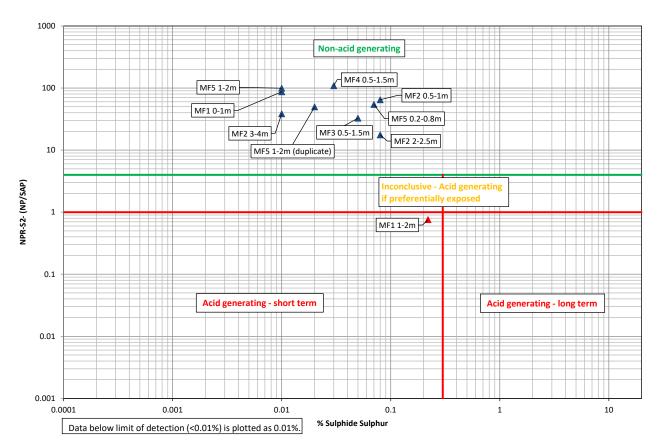
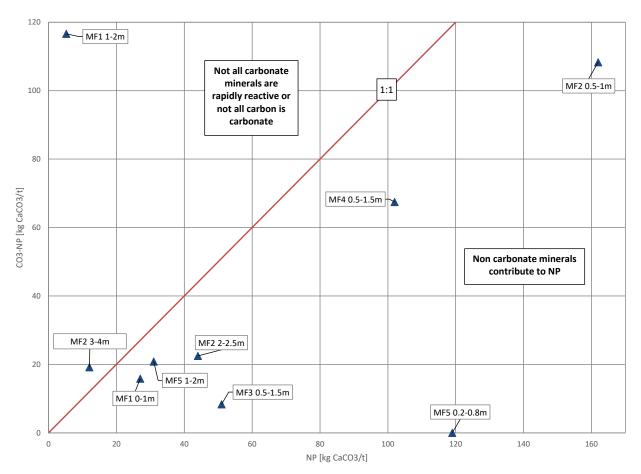


Figure 4-2: Sulphur species versus total sulphur content.

Therefore, considering the sulphur speciation, all samples except for sample MF1 1-2m are now re-classified as non-acid generating. Sample MF1 1-2m is categorised as "short-term" acid generating due to its low sulphide neutralising potential ratio (NPR-S²⁻, calculated using the sulphide acid potential (SAP) versus the sulphide sulphur instead of the total sulphur content) and the sample containing approximately 25% of its total sulphur as acid-generating sulphide sulphur (Figure 4-3).



4.2.4. ABA results under consideration of carbonate speciation

Total carbon concentrations varied widely in the nine CDR Slimes samples, ranging from 0.67% to 49.2%, while inorganic carbon contents ranged from 0% to 1.4% (Table 4-1). The inorganic carbon content is potentially significant from an acid neutralisation perspective as it gives rise to calculated carbonate neutralisation potential (CO_3 -NP, see chapter 3.2.4) which varied between 0 kg CaCO₃/t in sample MF5 0.2-0.8m and 116.62 kg CaCO₃/t in sample MF1 1-2m.

A poor to no correlation was observed for most samples between the CO₃-NP and the traditional NP (after Sobek et al. 1978) in Figure 4-4, suggesting that the available neutralisation potential is generally not provided by reactive carbonate minerals. Most samples had higher NP values than calculated CO₃-NP values (CO₃-NP values up to 116.62 kg CaCO₃/tonne, while NP values are up to 162 kg CaCO₃/tonne), suggesting that mostly non-carbonate minerals contribute to the neutralisation potential. For sample MF1 1-2m, the CO₃-NP value was substantially larger than the NP value and for sample MF2 3-4m slighter larger, indicating that most carbonate minerals in the sample are not rapidly reactive or not all carbon is carbonate.

Figure 4-4: Carbonate neutralisation potential versus (Sobek) neutralisation potential.

A classification of the samples based on the Neutralising Potential Ratio calculated from the CO₃-NP (NPR- CO₃) and the sulphide acid potential versus the sulphide sulphur content is given in Figure 4-5. Based on the calculated CO₃-NPR values, samples MF1 0-1m, MF2 3-4m and MF5 1-2m are classified as non-acid generating, samples MF4 0.5-1.5m and MF2 0.5-1m as inconclusive, and samples MF2 2-2.5m and MF3 0.5-1.5m are now classified as "short-term" acid generating. It should be noted that sample MF5 0.2-0.8m cannot be classified according to the CO₃-NPR as its value is equal to zero.

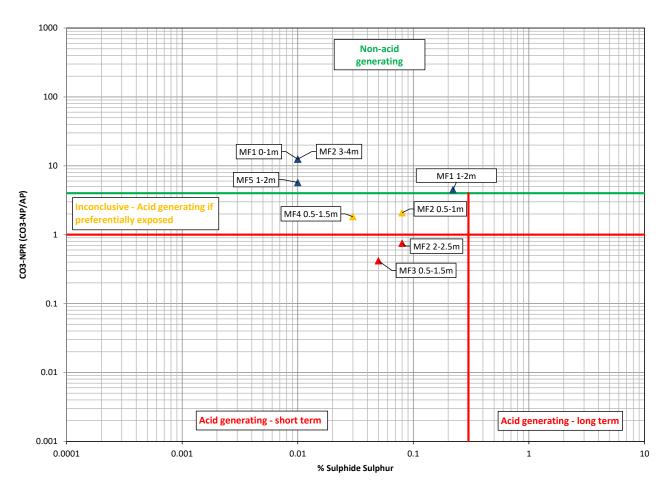
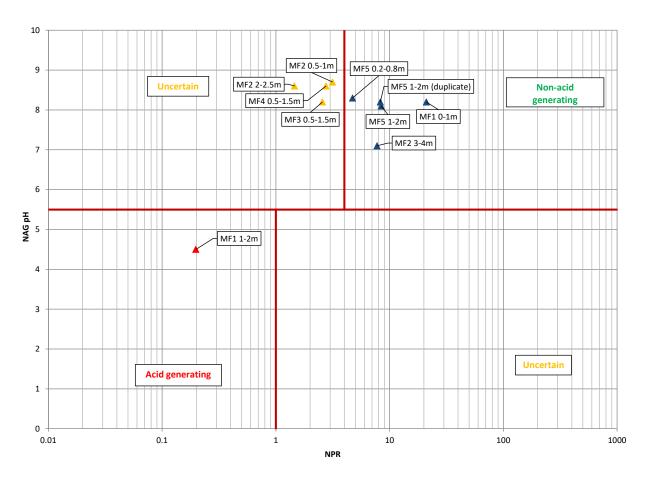



Figure 4-5: Carbonate neutralisation potential versus sulphide sulphur (%).

4.2.5. NAG test results

The NAG pH is the result of oxidation of sulphide minerals in the samples by hydrogen peroxide (H₂O₂). The NAG test would also be expected to oxidise iron/manganese carbonate minerals (like siderite) in the samples and release the residual acidity associated with these minerals if present. Samples with a NAG pH value less than 3.5 are considered to indicate potentially acid generating (PAG) material, while samples with a NAG pH larger than 5.5 are considered to indicate non-acid generating (NAG) material, with intermediate values between 3.5 and 5.5 indicating a low risk of acid generation.

The combined evaluation of the NAG pH and NPR values (Figure 4-6), with a lower NPR screening criteria for samples with NAG pH values larger 5.5, suggests that samples MF1 0-1m, MF2 3-4m, MF5 0.2-0.8m and MF5 1-2m are non-acid generating. Samples MF2 0.5-1m, MF2 2-2.5m, MF3 0.5-1.5m and MF4 0.5-1.5m have a low risk of acid generation ("uncertain"), while sample MF1 1-2m is classified as acid generating due to its low NAG pH value of 4.5. These screening criteria provide the same classification results as seen in the NPR vs. total sulphur classification in section 4.2.2, Figure 4-1.

Figure 4-6: NAG pH versus neutralisation potential ratio.

4.2.6. NAG test results under consideration of sulphur speciation

If the sulphur speciation is considered in the assessment of the NAG test results by using the sulphide neutralising potential ratio (NPR-S²⁻, calculated using the sulphide acid potential, SAP) instead of the NPR ratio, sample MF1 1-2m is classified as acid-generating, whereas all other samples are categorised as non-acid generating as shown in Figure 4-7. This screening method provides the same results as shown for the sulphide neutralising potential ratio versus the sulphide sulphur content in section 4.2.3, Figure 4-3.

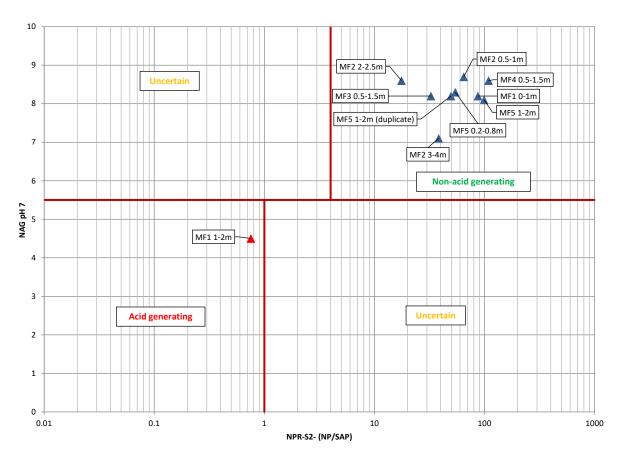


Figure 4-7: NAG pH versus sulphide neutralisation potential ratio (NPR-S2).

4.2.7. Summary of ARD test results

Samples MF1 0-1m, MF2 3-4m, MF5 0.2-0.8m and MF5 1-2m were consistently classified as non-acid generating for all ABA and NAG test results. Sample MF1 1-2m was mainly classified as acid-generating, except for when considering the carbonate neutralisation potential ratio vs. the sulphide sulphur content, which categorised the sample as non-acid generating. This is due to the carbonate NPR being sufficiently higher than the acid-generating sulphide sulphur content in the sample.

However, the ABA and NAG test results for all other CDR slimes samples appear contradictory as they shift between acid generating, inconclusive and non-acid generating. This is primarily due to their relatively limited sulphide sulphur contents and subsequently calculated acid potentials, as well as the differentiation between readily available carbonate neutralisation potential versus non-carbonate minerals mostly contributing to the neutralisation potential.

Based on a combined evaluation of all test results the following classifications are given:

- Sample MF1 1-2m is classified as potentially acid generating due to its negative (sulphide) net neutralisation potential.
- Samples MF1 0-1m, MF2 3-4m, MF5 0.2-0.8m and MF5 1-2m are classified as non-acid generating based on positive net neutralisation potentials and low content of acid generating sulphide sulphur.
- Samples MF2 0.5-1m, MF4 0.5-1.5, MF2 2-2.5 and MF3 0.5-1.5m are classified as inconclusive (or uncertain) and potentially acid generating if preferentially exposed to the atmosphere. If acid generating, this should be short term, i.e. decades and not centuries due to its low sulphide sulphur content.

4.3. MINERALOGICAL ANALYSIS

To gain a better understanding of their mineralogical make-up, the samples underwent XRD analysis. The relative phase amounts or mineral groups were determined in weight-% and are provided in Table 4-2. The presented mineral names in Table 4-2 may not reflect the actual compositions of minerals identified, but rather the mineral group. To quantify the amorphous phase identified in the CDR Slimes samples, 20% of Si was added to the samples. Thereafter, the samples were micronized using a McCrone micronizing mill before being scanned. It should be noted that the amorphous content may carry an error of ±15 weight %. The amorphous content is likely presenting organic carbon and/or a glassy phase formed during the chrome direct reduction (CDR) process, whereby chrome ore is brought into contact with finely divided coal at high temperatures. During the CDR process, dust is captured as a by-product via water sprays representing the CDR slimes samples which are mostly composed of an amorphous phase (Table 4-2).

The key features of the mineralogical analysis are as follows:

- The mineral composition of almost all samples (except for sample MF2 3-4m) is dominated (78 to 92 weight %) by an amorphous phase likely presenting organic carbon and/or a glassy phase from the CDR process.
- The remaining minor and trace elements comprise chromite, calcite, quartz, mullite, bassanite, magnetite and iron which vary in weight % within two orders of magnitude.
- Sample MF2 3-4m differs in composition as it comprises the contact zone between the CRD Slimes material and underlying weathered bedrock composed of interlayered sandstone, mudstone, and shale. Major mineral phases are amorphous (49 weight %) and quartz (43 weight %), minor minerals are kaolinite and hematite and traces were detected of dolomite and plagioclase.

Compound Name	Ideal Chemical Formula	MF1 0- 1m	MF1 1- 2m	MF2 0.5-1m	MF2 2- 2.5m	MF2 3- 4m	MF3 0.5- 1.5m	MF4 0.5- 1.5m	MF5 0.2- 0.8m	MF5 1- 2m
		96716	96717	96718	96719	96720	96721	96722	96723	96724
Quartz	SiO ₂	5	3.46	2.21	3.07	42.71	2.58	2.09	3.15	10.94
Mullite	3Al ₂ O ₃ 2SiO ₂	1.06	7.74	4.4	0		0	0.06	8.65	1.21
Bassanite	2(CaSO ₄) H ₂ O	0.06	1.27	0.57	2.17		0.37	0.18	0.05	0.16
Magnetite	Fe ₃ O ₄	0.03	1.02	0.01	0.04		0	0	0.36	0.04
Iron	Fe	0.05	0	0.99	0.01		0.68	0.82	0.14	0.04
Chromite	Fe ²⁺ Cr ₂ O ₄	2.25	4.77	9.18	2.1		13.64	14.6	8.68	1.81
Calcite	CaCO ₃	0.64	2.15	0.95	0.51		0.55	2.27	0.62	0.52
Amorphous		90.9	79.58	81.7	92.09	48.8	82.18	79.96	78.35	85.28
Dolomite	Ca,Mg (CO ₃) ₂					0.86				
Hematite	Fe ₂ O ₃					1.46				
Kaolinite	Al ₂ Si ₂ O ₅ (OH) ₄					5.34				
Plagioclase	(Na,Ca)(Si,Al) ₄ O ₈					0.83				

Table 4-2: Major mineral composition of the CDR Slimes samples (XRD Analysis) (weight %).

4.4. LEACHATE CHEMISTRY AND WASTE CLASSIFICATION

4.4.1. GN. R. 635 and 636

Total and leachable concentrations of the nine CDR Slimes samples were analysed by Waterlab (Pty) Ltd., South Africa to determine the leachate quality, identify constituents of concern and classify the material according to waste type and landfill design required upon disposal. The total and leachable concentrations (liquid to solid ratio 1:20) along with the applicable thresholds used for the classification of the samples are presented in Table 4-3, Table 4-4 and Table 4-5 and, respectively. It is important to note that according to the Government Notices R. 634, 635 and 636 (Government Gazette No. 36784, 23/08/2013), the exceedance of a threshold value for **any element** or chemical substance determines the overall waste classification for each sample (Table 4-7).

All samples exceeded TCT0 thresholds for total concentrations (aqua regia) as indicated in Table 4-3.

• Ba and Pb are constituents of concern in all analysed samples.

Further exceedances of the **TCT0** threshold include:

- **Co** and **V** for samples MF1 1-2m, MF2 0.5-1m, MF2 3-4m, MF3 0.5-1.5m, MF4 0.5-1.5m, and MF5 0.2-0.8m.
- Cu and Mn for samples MF2 0.5-1m, MF2 3-4m, MF3 0.5-1.5m, MF4 0.5-1.5m, and MF5 0.2-0.8m.
- **Cr**_{total} (46000 mg/kg) for samples MF2 0.5-1m, MF3 0.5-1.5m, and MF4 0.5-1.5.
- Exceedances for **Ni** (91 mg/kg) were found in samples Mf1 0-1m, MF1 1-2m, MF2 0.5-1m, MF3 0.5-1.5m, MF4 0.5-1.5m, MF5 0.2-0.8m and MF5 1-2m.
- TCT0 threshold for **Zn** (240 mg/kg) was exceeded in all samples except MF2 3-4m.
- The Cr(VI) (6.5 mg/kg) threshold was exceeded in samples MF1 1-2m, MF2 2-2.5m, MF3 0.5-1.5m, MF4 0.5-1.5 and MF5 1-2m.
- The threshold for **F** (100 mg/kg) was exceeded in samples MF1 1-2m, MF2 2-2.5m, MF5 0.2-0.8m and MF5 1-2m.

The following exceedances are noted for the distilled water leachable concentrations (1:20 ratio) in Table 4-5:

- The LCT0 threshold was exceeded for Cr_{total} (0.1 mg/l) in samples MF1 0-1m, MF1 1-2m, MF3 0.5-1.5m, MF4 0.5-1.5m, MF5 0.2-0.8m and MF5 1-2m.
- The LCT0 threshold was exceeded for **Cr (VI)** (0.05 mg/l) in samples MF1 0-1m, MF1 1-2m, MF2 2-2.5m, MF5 0.2-0.8m and MF5 1-2m.
- Sample MF3 0.5-1.5m slightly exceeded the LCT2 threshold for Cr (VI) (5 mg/l).
- The LCT0 threshold for **TDS** (1000 mg/l) was exceeded in sample MF2 2-2.5m.
- The LCT0 threshold for **SO**₄ (250 mg/l) was exceeded in samples MF1 1-2m, MF2 0.5-1m, and MF2 2-2.5m.
- The LCT0 threshold for **F** (1.5 mg/l) was exceeded in samples MF2 3-4m, MF4 0.5-1.5m and MF5 0.2-0.8m.

Table 4-6 provides additional information on the leachate quality based on a distilled water leachate 1:4 (solid to liquid) ratio. While not applicable for the waste classification, the distilled water (1:4 ratio) leachable concentrations were conducted as the results emulate more realistic liquid to solid ratios without dilution. Expectedly, the 1:4 ratio leachable concentrations are significantly higher than the 1:20 ratio concentrations. The results are utilised for comparison purposes only, and do <u>not form any part</u> of the formal waste classification. Exceedances were noted for the following thresholds and parameters:

- The LCT0 threshold for B was exceeded in samples MF2 2-2.5m and MF5 0.2-0.8m.
- The LCT0 thresholds for both Cr_{total} and Cr(VI) were exceeded in samples MF1 1-2m, MF2 2-2.5m, MF5 0.2-0.8m and MF5 1-2m.
- The LCT1 thresholds for both Cr_{total} and Cr(VI) were exceeded in sample MF1 0-1m.
- The LCT2 thresholds for both Cr_{total} and Cr(VI) were exceeded in sample MF3 0.5-1.5.

- Hg exceeded the LCT0 threshold in samples MF2 0.5-1m and MF4 0.5-1.5m.
- Mo exceeded the LCT0 threshold in samples MF2 0.5-1m, MF2 2-2.5m, MF4 0.5-1.5m and MF5 0.2-0.8m.
- Sb exceeded the LCT0 threshold in sample MF4 0.5-1.5m.
- Zn exceeded the LCT0 threshold in sample MF1 1-2m.
- The LCT0 threshold for TDS was exceeded in samples MF1 1-2m, MF2 0.5-1m, MF2 2-2.5m, MF3 0.5-1.5m and MF4 0.5-1.5m.
- The LCT0 threshold for SO₄ was exceeded in all samples excluding samples MF1 0-1m and MF2 3-4m.
- F exceeded the LCT0 threshold in all samples except for sample MF2 2-2.5m

Based on the prescribed analysis of total concentrations and the distilled water leachate (1:20 solid to liquid ratio only) concentrations, the following classification is given:

The general exceedance of the total concentration thresholds TCT0 for barium and lead in all samples (i.e. TCT0 < TC <TCT1, as well as the other exceedances) along with all leachable concentrations below their LCT1 thresholds (i.e. LC < LCT1) for Cr_{total}, Cr(VI), TDS, SO4 and F classifies all samples, except for sample MF3 0.5-1.5m, formally as Type 3 Waste (Table 4-7). This waste type theoretically requires a Class C landfill design unless a risk assessment by a qualified person suggests otherwise. Only sample MF3 0.5-1.5m exceeded the LCT2 threshold for Cr(VI), classifying the sample as Type 1 Waste, requiring a Class A landfill design.

The geochemical assessment of five CDR Slimes profiles sampled from the disposal area confirmed both the vertical and horizontal heterogeneity of the material observed in previous studies. This leads to variations in the classification of the waste type. Although the majority of the samples was classified as Type 3 Waste, some sections of the CDR Slimes disposal area exceeded the LCT2 threshold for Cr(VI), which however cannot be referenced to a particular horizon throughout the dump. Due to the heterogeneous composition of the CDR Slimes material, the CDR Slimes storage facility therefore needs to be handled according to the worst-case sample result until conclusively screened (classified) during excavation.

Δh

Total	MF1 0-1m	MF1 1-2m	MF2 0.5-1m	MF2 2-2.5m	MF2 3-4m	MF3 0.5-1.5m	MF4 0.5-1.5m	MF5 0.2-0.8m	MF5 1-2m		Threshold	
Sample Number	96716	96717	96718	96719	96720	96721	96722	96723	96724	тсто	TCT1	TCT2
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
As, Arsenic	<0.400	0.800	1	<0.400	0.400	0.400	0.400	2.40	0.800	5.80	500.00	2,000
B, Boron	<10	36	68	58	13	32	38	103	35	150	15,000	6,000
Ba, Barium	118.0	226.0	218.0	95.6	324.8	72.8	102.0	399.6	121.2	62.5	6,250	25,000
Cd, Cadmium	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	7.5	260	1,040
Co, Cobalt	18	54.4	127.6	<10	59.2	125.6	176.8	104	32	50	5,000	20,000
Cr _{Total} , Chromium Total	12000	24000	78,800	9200	294	71,200	89,600	40000	9200	46,000	800,000	N/A
Cu, Copper	<4.00	11	70	<4.00	94	31	77	45	<4.00	16	19,500	78,000
Hg, Mercury	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	0.93	160.00	640
Mn, Manganese	856	287	4,000	844	1,436	4,400	4,800	1,640	884	1,000	25,000	100,000
Mo, Molybdenum	<10	<10	<10	<10	<10	<10	<10	<10	<10	40	1,000	4,000
Ni, Nickel	129.2	176	536	72	45	564	740	460	132.8	91	10,600	42,400
Pb, Lead	57.6	176.8	154	53.6	38.8	195.2	190	226.4	70.4	20	1,900	7,600
Sb, Antimony	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	10	75	300
Se, Selenium	<0.400	0.400	<0.400	<0.400	<0.400	0.400	<0.400	<0.400	<0.400	10	50	200
V, Vanadium	<10	180.8	336	<10	293.6	247.6	309.2	258.4	22	150	2,680	10,720
Zn, Zinc	2868	6400	12800	2040	114	11200	12800	15200	2852	240	160,000	640,000
Inorganic Anions	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Chloride as Cl	562.40	<20	1431.00	40.55	94.16	116.00	871.40	244.00	68.22			
Sulphate as SO4	24161	16813	25848	475	1051	8539	7087	4724	2888			
Nitrate as N	13.29	155.80	22.46	5.80	19.50	62.47	21.55	89.75	11.82			
Total Fluoride [s] mg/kg	19.91	106.6	31.05	105.6	46.37	48.56	44.86	100.7	185.8	100	10,000	40,000
Cr(VI), Chromium (VI) Total [s]	<2	9.2	<2	22.4	<2	186.8	104.4	4.40	12.8	6.5	500.00	2,000
Total Cyanide as CN	9.6	2.2	13	<0.5	<0.5	1.2	4.6	2.7	<0.5	14	10,500	42,000

 Table 4-3: Totals (aqua regia digestion) concentrations for the nine CDR Slimes samples (exceedances highlighted).

Committee ID	MF1 0-	MF1 1-	MF2 0.5-	MF2 2-	MF2 3-	MF3 0.5-	MF4 0.5-	MF5 0.2-	MF5 1-
Sample ID	1m	2m	1m	2.5m	4m	1.5m	1.5m	0.8m	2m
Lab ID	96716	96717	96718	96719	96720	96721	96722	96723	96724
Ag	0.003	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
Al	18	112	83	21	157	44	61	162	33
Ве	0.003	0.015	0.011	0.005	0.005	0.006	0.007	0.030	0.005
Bi	0.004	0.011	0.012	0.002	0.001	0.007	0.012	0.017	0.003
Са	26	30	56	61	12	25	48	51	26
Се	0.007	0.010	0.013	0.008	0.041	0.003	0.006	0.048	0.017
Cs	0.004	< 0.001	0.002	0.005	0.001	0.003	0.003	0.002	0.003
Dy	0.001	0.007	0.008	0.001	0.011	0.002	0.003	0.017	0.002
Er	0.001	0.005	0.005	0.001	0.006	0.001	0.002	0.011	0.001
Eu	< 0.001	0.001	< 0.001	< 0.001	0.001	< 0.001	< 0.001	0.001	< 0.001
Fe	57	92	213	42	244	21	280	152	109
Ga	0.075	0.072	0.277	0.042	0.032	0.263	0.306	0.199	0.064
Gd	0.001	0.004	0.003	0.001	0.004	0.001	0.001	0.010	0.002
Ge	0.005	0.010	0.013	0.003	0.001	0.010	0.013	0.020	0.004
Hf	0.034	0.029	0.011	< 0.001	0.030	0.001	0.003	0.033	0.002
Но	< 0.001	0.002	0.002	< 0.001	0.002	< 0.001	0.001	0.004	0.001
К	18	4.1	32	19	11	23	25	8.0	19
La	0.002	0.003	0.006	0.003	0.008	0.001	0.002	0.021	0.003
Li	0.054	0.075	0.088	0.071	0.084	0.103	0.089	0.136	0.078
Lu	< 0.001	0.001	0.001	< 0.001	0.001	< 0.001	< 0.001	0.001	<0.001
Mg	28	25	135	41	12	133	160	128	36
Mn	2.30	0.830	10	2.26	4.13	12	13	4.38	2.39
Na	2	2	28	6	4	9	14	4	3
Nb	< 0.001	0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
Nd	0.002	0.006	0.006	0.003	0.010	0.001	0.002	0.021	0.003
Os	0.001	0.001	0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.001	<0.001
Р	1.50	0.875	1.56	1.60	1.65	1.89	1.87	2.67	1.69
Pd	< 0.001	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
Pr	< 0.001	0.001	0.001	0.001	0.002	< 0.001	< 0.001	0.005	0.001
Pt	< 0.001	0.001	0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	<0.001
Rb	0.020	< 0.001	0.036	0.018	0.015	0.025	0.029	0.010	0.022
Sc	0.006	0.027	0.022	0.055	0.042	0.006	0.009	0.037	0.006
Si	944	182	163	841	670	581	352	284	876
Sm	0.001	0.003	0.002	0.001	0.003	< 0.001	0.001	0.006	0.001
Sn	0.005	0.007	0.003	0.004	< 0.001	0.003	0.003	0.008	0.003
Sr	0.056	0.061	0.084	0.063	0.021	0.031	0.052	0.125	0.043
Tb	< 0.001	0.001	0.001	< 0.001	0.001	< 0.001	< 0.001	0.002	< 0.001

Table 4-4: Total concentrations (aqua regia) for all cations (in mg/l) of the CDR Slimes samples.

Δh

Comula ID	MF1 0-	MF1 1-	MF2 0.5-	MF2 2-	MF2 3-	MF3 0.5-	MF4 0.5-	MF5 0.2-	MF5 1-
Sample ID	1m	2m	1m	2.5m	4m	1.5m	1.5m	0.8m	2m
Lab ID	96716	96717	96718	96719	96720	96721	96722	96723	96724
Th	0.006	0.020	0.015	0.003	0.022	0.003	0.005	0.042	0.007
Ti	0.688	9.28	5.42	0.679	23	1.78	2.75	10	1.93
TI	0.003	0.003	0.011	0.003	0.001	0.009	0.012	0.012	0.003
Tm	<0.001	0.001	0.001	<0.001	0.001	< 0.001	<0.001	0.001	<0.001
U	0.001	0.013	0.008	0.001	0.007	0.002	0.004	0.022	0.004
W	0.089	0.109	0.107	0.072	0.117	0.035	0.035	0.033	0.179
Y	0.001	0.007	0.006	0.001	0.006	0.001	0.002	0.015	0.002
Yb	0.002	0.005	0.005	0.002	0.006	0.002	0.003	0.010	0.002
Zr	<0.001	0.082	0.006	<0.001	0.047	< 0.001	<0.001	0.064	<0.001

In all samples <0.001 mg/l Au In Ir Rh Ru Ta Te

Table 4-5: Leachate	(distilled water	1:20 ratio)	test concentrations for	the samples	(exceedances highlighted).

Leachable 1:20	MF1 0-1m	MF1 1-2m	MF2 0.5-1m	MF2 2-2.5m	MF2 3-4m	MF3 0.5-1.5m	MF4 0.5-1.5m	MF5 0.2-0.8m	MF5 1-2m	Threshold			
Comula Number	96716	96717	96718	2-2.5m 96719	3-4m 96720	96721	96722	96723	1-2m 96724	LCT0 LCT1 LCT2			LCT3
Sample Number											-		
Units	mg/ℓ	mg/ℓ	mg/ℓ	mg/ℓ	mg/ℓ	mg/ℓ	mg/ℓ	mg/ℓ	mg/ℓ	mg/ℓ	mg/ℓ	mg/ℓ	mg/ℓ
As, Arsenic	0.003	<0.001	<0.001	<0.001	0.001	< 0.001	0.003	0.001	0.002	0.01	0.5	1	4
B, Boron	0.070	0.075	0.129	0.233	0.149	0.158	0.152	0.188	0.106	0.5	25	50	200
Ba, Barium	<0.025	0.032	0.051	<0.025	0.063	<0.025	<0.025	0.067	<0.025	0.7	35	70	280
Cd, Cadmium	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	0.001	<0.001	<0.001	0.003	0.15	0.3	1.2
Co, Cobalt	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.5	25	50	200
Cr _{Total} , Chromium Total	1.63	0.176	<0.025	0.065	<0.025	4.93	0.176	0.126	0.216	0.1	5	10	40
Cr(VI), Chromium (VI)	1.61	0.157	<0.010	0.055	<0.010	5.1	<0.010	0.116	0.178	0.05	2.5	5	20
Cu, Copper	<0.010	<0.010	<0.010	< 0.010	<0.010	< 0.010	< 0.010	<0.010	<0.010	2.0	100	200	800
Hg, Mercury	< 0.001	< 0.001	0.001	< 0.001	< 0.001	< 0.001	0.001	< 0.001	< 0.001	0.006	0.3	0.6	2.4
Mn, Manganese	<0.025	0.041	<0.025	<0.025	0.066	<0.025	0.062	<0.025	<0.025	0.5	25	50	200
Mo, Molybdenum	<0.025	<0.025	0.068	<0.025	<0.025	<0.025	0.030	<0.025	<0.025	0.07	3.5	7	28
Ni, Nickel	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.07	3.5	7	28
Pb, Lead	0.001	< 0.001	0.001	< 0.001	0.001	0.001	0.006	< 0.001	<0.001	0.01	0.5	1	4
Sb, Antimony	0.001	< 0.001	0.004	0.003	< 0.001	0.001	0.014	0.001	0.001	0.02	1.0	2	8
Se, Selenium	0.001	< 0.001	< 0.001	< 0.001	0.001	< 0.001	0.002	< 0.001	<0.001	0.01	0.5	1	4
V, Vanadium	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.2	10	20	80
Zn, Zinc	0.026	1.03	<0.025	<0.025	<0.025	0.067	0.253	<0.025	<0.025	5.0	250	500	2000
Inorganic Anions	mg/ℓ	mg/€	mg/ℓ	mg/€	mg/ℓ	mg/ℓ	mg/ℓ	mg/ℓ	mg/ℓ	mg/ℓ	mg/ℓ	mg/ℓ	mg/ℓ
Total Dissolved Solids*	72	922	854	1,796	104	354	384	210	146	1,000	12,500	25,000	100,000
Chloride as Cl	<2	<2	20	13	6	4	15	<2	<2	300	15,000	30,000	120,000
Sulphate as SO4	9	640	548	1195	38	177	113	95	70	250	12,500	25,000	100,000
Nitrate as N	0.2	0.3	<0.1	0.1	<0.1	1.2	<0.1	<0.1	0.1	11	550	1100	4400
Fluoride as F	1.0	0.6	1.5	0.4	1.6	1.0	1.6	3	1.3	1.5	75	150	600
Paste pH	8.3	5.8	9.7	9.8	7.4	8.6	9.3	8.9	8.6				
Moisture %	47.3	45.7	38.3	55.6	15.8	46.6	31.9	42.6	57.3				
					==		0 = .0	.=					

Leachable 1:4	MF1 0-1m	MF1 1-2m	MF2 0.5-1m	MF2 2-2.5m	MF2 3-4m	MF3 0.5-1.5m	MF4 0.5-1.5m	MF5 0.2-0.8m	MF5 1-2m	Threshold			
Sample Number	96716	96717	96718	96719	96720	96721	96722	96723	96724	LCT0	LCT1	LCT2	LCT3
Units	mg/ℓ	mg/€	mg/ℓ	mg/ℓ	mg/ℓ	mg/ℓ	mg/ℓ	mg/ℓ	mg/ℓ	mg/ℓ	mg/ℓ	mg/ℓ	mg/ℓ
As, Arsenic	0.002	<0.001	< 0.001	0.002	0.001	< 0.001	0.001	< 0.001	< 0.001	0.01	0.5	1	4
B, Boron	0.193	0.454	0.319	0.767	0.215	0.268	0.334	0.743	0.407	0.5	25	50	200
Ba, Barium	<0.025	<0.025	0.039	0.033	0.036	<0.025	<0.025	0.034	0.029	0.7	35	70	280
Cd, Cadmium	<0.001	<0.001	< 0.001	<0.001	<0.001	< 0.001	< 0.001	<0.001	<0.001	<0.010	0.15	0.3	1.2
Co, Cobalt	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.5	25	50	200
Cr _{Total} , Chromium Total	7.17	0.366	<0.025	0.121	<0.025	24	0.078	0.164	0.559	0.1	5	10	40
Cr(VI), Chromium (VI)	2.80	0.372	<0.010	0.101	<0.010	16.3	<0.010	0.169	1.490	0.05	2.5	5	20
Cu, Copper	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	2.0	100	200	800
Hg, Mercury	<0.001	<0.001	0.030	0.005	0.004	< 0.001	0.021	<0.001	<0.001	0.006	0.3	0.6	2.4
Mn, Manganese	<0.025	0.291	<0.025	<0.025	0.034	<0.025	<0.025	<0.025	<0.025	0.5	25	50	200
Mo, Molybdenum	<0.025	<0.025	0.414	0.099	0.036	<0.025	0.127	0.085	0.038	0.07	3.5	7	28
Ni, Nickel	<0.025	0.044	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.07	3.5	7	28
Pb, Lead	< 0.001	<0.001	0.001	<0.001	<0.001	< 0.001	0.001	<0.001	<0.001	0.01	0.5	1	4
Sb, Antimony	0.003	<0.001	0.006	0.014	<0.001	0.002	0.025	<0.001	0.002	0.02	1.0	2	8
Se, Selenium	<0.001	<0.001	< 0.001	<0.001	<0.001	< 0.001	0.001	<0.001	<0.001	0.01	0.5	1	4
V, Vanadium	<0.025	<0.025	<0.025	0.048	<0.025	<0.025	<0.025	<0.025	<0.025	0.2	10	20	80
Zn, Zinc	<0.025	10.0	<0.025	<0.025	<0.025	0.041	0.033	<0.025	<0.025	5.0	250	500	2000
Inorganic Anions	mg/ℓ	mg/€	mg/€	mg/ℓ	mg/€	mg/ℓ	mg/€	mg/ℓ	mg/ℓ	mg/ℓ	mg/ℓ	mg/ℓ	mg/ℓ
Total Dissolved Solids	225*	2408	4342	2430	414	1501*	1118	902	574*	1,000	12,500	25,000	100,000
Chloride as Cl	2	<2	125	55	14	14	36	4	5	300	15,000	30,000	120,000
Sulphate as SO4	47	1411	2667	1389	133	897	460	365	262	250	12,500	25,000	100,000
Nitrate as N	0.2	2.2	<0.1	0.3	0.3	2.3	0.1	0.1	0.4	11	550	1100	4400
Fluoride as F	3.3	4.0	4.2	1.0	3.2	2.1	4.9	5.0	2.4	1.5	75	150	600

 Table 4-6: Leachate (distilled water 1:4 ratio) test concentrations for the samples (exceedances highlighted).

Sample	тст	LCT	Waste Type	Landfill design	
MF1 0-1m	<tct1< th=""><th><ltc1< th=""><th>Type 3</th><th>Class C</th></ltc1<></th></tct1<>	<ltc1< th=""><th>Type 3</th><th>Class C</th></ltc1<>	Type 3	Class C	
MF1 1-2m	<tct1< th=""><th><ltc1< th=""><th>Type 3</th><th>Class C</th></ltc1<></th></tct1<>	<ltc1< th=""><th>Type 3</th><th>Class C</th></ltc1<>	Type 3	Class C	
MF2 0.5-1m	<tct1< th=""><th><ltc1< th=""><th>Type 3</th><th>Class C</th></ltc1<></th></tct1<>	<ltc1< th=""><th>Type 3</th><th>Class C</th></ltc1<>	Type 3	Class C	
MF2 2-2.5m	<tct1< th=""><th><ltc1< th=""><th>Type 3</th><th>Class C</th></ltc1<></th></tct1<>	<ltc1< th=""><th>Type 3</th><th>Class C</th></ltc1<>	Type 3	Class C	
MF2 3-4m	<tct1< th=""><th><ltc1< th=""><th>Type 3</th><th>Class C</th></ltc1<></th></tct1<>	<ltc1< th=""><th>Type 3</th><th>Class C</th></ltc1<>	Type 3	Class C	
MF3 0.5-1.5m	<tct1< th=""><th>< LCT3</th><th>Type 1</th><th>Class A</th></tct1<>	< LCT3	Type 1	Class A	
MF4 0.5-1.5m	<tct1< th=""><th><ltc1< th=""><th>Type 3</th><th>Class C</th></ltc1<></th></tct1<>	<ltc1< th=""><th>Type 3</th><th>Class C</th></ltc1<>	Type 3	Class C	
MF5 0.2-0.8m	<tct1< th=""><th><ltc1< th=""><th>Type 3</th><th>Class C</th></ltc1<></th></tct1<>	<ltc1< th=""><th>Type 3</th><th>Class C</th></ltc1<>	Type 3	Class C	
MF5 1-2m	<tct1< th=""><th><ltc1< th=""><th>Type 3</th><th>Class C</th></ltc1<></th></tct1<>	<ltc1< th=""><th>Type 3</th><th>Class C</th></ltc1<>	Type 3	Class C	

Table 4-7: Summary table of waste classification results for the CDR Slimes samples.

4.4.2. SANS 10234 Hazardous waste classification

A hazardous waste classification according to SANS 10234 was conducted on the nine CDR slimes (including one bedrock) samples by Interwaste in August 2020. The SANS 10234 classification is based on total and leachable metals and metalloids as listed in GN.R. 635, inorganic anions (Cl, F, NO₃, SO₄ and CN), organics as listed in GN.R. 635 and other detectable organic substances as well as crystalline content, pH and particle size distribution. All laboratory certificates are provided in Appendix C. It should be noted that the classification is based on the worst-case sample scenario since all samples were derived from the same waste generation process. A definition of all hazard classes and categories as well as a detailed waste classification is provided in the SANS 10234 classification report by Interwaste (2020) attached in Appendix D.

Results obtained from the organic analyses showed that no hazardous organic constituents were present in the samples. However, based on the inorganic CDR slimes components, the waste is classified as hazardous to human health. According to SANS 10234, hazardous waste is defined as any waste that contains organic or inorganic elements or compounds that may, owing to the inherent physical, chemical or toxicological characteristics of that waste, have a detrimental impact on health and the environment (Interwaste, 2020). The hazardous components identified in the CDR slimes material can be summarised as follows:

- Quartz
 - Carcinogenicity: Category 1A
 - Specific Target Organ Toxicity (STOT): Single exposure Category 3, repeat exposure Category 1
- Silicon Dioxide
 - STOT: Repeat exposure Category 1
- Iron oxide
 - Skin corrosion / irritation: category 2
 - Eye damage / irritation: category 2
 - STOT: Single exposure category 3

According to the SANS 10234 classification (Interwaste, 2020), the CDR slimes material was categorised as hazardous waste based on the following hazard classes and statements:

- Hazard classes and categories hazard classes and categories:
 - \circ Skin irritation \rightarrow Category 2,
 - \circ Eye irritation \rightarrow Category 2A,
 - \circ Carcinogenicity \rightarrow Category 1B,
 - \circ Specific target organ toxicity \rightarrow single exposure \rightarrow Category 3, and
 - $\circ \quad \ \ \text{Specific target organ toxicity} \rightarrow \text{repeated exposure} \rightarrow \text{Category 1.}$
- Hazard statements:
 - H315: causes skin irritation,
 - H319: Causes severe eye irritation,

- H335: May cause respiratory irritation,
- H350: May cause cancer, and
- H372: Causes damage to organs through prolonged or repeated exposure.

Due to the identified hazards to human health, a safety data sheet (SDS) is required for the CDS slimes disposal facility as per "Waste Classification and Management Regulations 2013 (GNR634)". A safety data sheet was compiled by Interwaste (2020) for the handling of the CDR Slimes material and is provided in Appendix D.

5. Discussion and Conclusion

A geochemical assessment of five CDR Slimes profiles sampled from the disposal area confirmed both vertical and horizontal heterogeneity of the material observed in previous studies (Delta H, 2019). Window sampling showed the presence of grey and black interlayered very fine grained to powdery filter cake representing ferrochrome fine and coarse dust, respectively. The alternating grey and black layers vary in thickness from a few mm to several decimetres. The layering is inconsistent between the different profiles. The mineralogical composition of the eight CDR Slimes samples (excluding one bedrock sample) was similar with small fluctuations in minor and trace minerals. Although the identified constituents of concern (Cr_{total}, Cr(VI), SO₄, F, Ba, Co, Cu, Mn, Ni, Pb, V, Zn and TDS) exceeded the TCT0 threshold in most samples, fluctuations in Cr(VI) leachable concentrations were observed ranging from less than the detection limit (<0.01 mg/l) to just over 5 mg/l, exceeding the LCT2 threshold. According to Ma and Garbers-Craig (2006), such variations in chemical composition of the ferrochrome dust and crystalline phases is expected and depends on the furnace type and heat, steel grade, composition of raw material used as well as operational parameters.

ABA results also showed variations in the acid generation potential for the different CDR Slimes samples. Sample MF1 1-2m is clearly classified as potentially acid generating due to its negative (sulphide) net neutralisation potential while samples MF1 0-1m, MF2 3-4m, MF5 0.2-0.8m and MF5 1-2m are classified as non-acid generating based on positive net neutralisation potentials and low contents of acid generating sulphide sulphur. Samples MF2 0.5-1m, MF4 0.5-1.5, MF2 2-2.5 and MF3 0.5-1.5m are classified as inconclusive (or uncertain) and potentially acid generating (short-term) if preferentially exposed to the atmosphere due to low sulphide sulphur contents.

Chemical variations of the filter cake, particularly for Cr(VI), lead to different waste type classifications of the CDR Slimes disposal site. Although most samples were classified as Type 3 Waste, requiring a Class C landfill design, one sample exceeded the Cr(VI) LCT2 threshold leading to a Type 1 Waste category, requiring a Class A landfill design. CDR dust is known to contain high levels of Cr(VI), which is both toxic and carcinogenic. Since the results cannot be referenced to a particular horizon within the CDR Slimes dam, the material can be further classified spatially during excavation.

A waste classification according to SANS 10234 regulations indicated that the CDR Slimes material is hazardous to human health. Hazardous components identified included quartz (carcinogenic, respiratory), silicon dioxide (respiratory) and iron dioxide (skin corrosion, eye damage, organ damage) alongside a small particle size (0.9 µm to 2090 µm). The hazard statements are summarised as follows and require a safety data sheet (provided in Appendix D) to enable safe handling procedures when in contact with the CDR Slimes material:

- H315: causes skin irritation,
- H319: Causes severe eye irritation,
- H335: May cause respiratory irritation,
- H350: May cause cancer, and
- H372: Causes damage to organs through prolonged or repeated exposure.

5.1. COMPARISON WITH PREVIOUS ASSESSMENTS

This waste classification of samples collected in June 2020 confirms the findings summarised in the review-report (Delta H, 2019), which contains analytical results of three different sampling campaigns A (EnviroSim, 2019), B (Golder, 2019) and C (EnviroSim, 2019). When all geochemical results were considered individually, one CDR Slimes composite sample (campaign A, A1-comp sample) also exceeded the LCT2 threshold for Cr(VI). However, total concentrations of antinomy were below the detection limit in the current study, other than found in the CDR Slimes sample from campaign B (Golder, 2019; Delta H, 2019). As indicated during sample campaign C by Knight Piésold (EnviroSim, 2019), Cr(VI), F and SO₄ are regarded as potential leachable contaminants of concern, which was also found during this assessment. However, sample campaign C additionally indicated that the leaching potential of Mn, Ni, Pb, Sb and Zn was elevated within the different sampled profiles (EnviroSim, 2019). These metals were not found to be elevated in the 1:20 ratio leachate in this study.

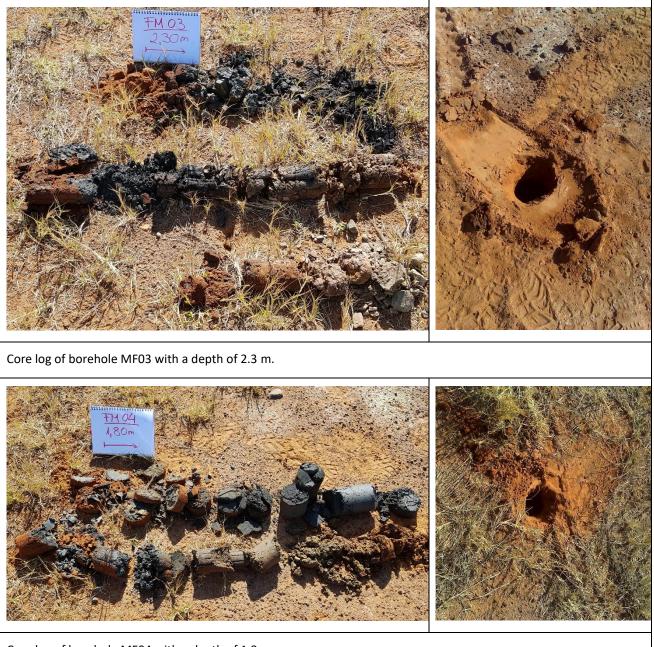
Furthermore, similar TCT0 exceedances were observed for sample campaign C (EnviroSim, 2019; Delta H, 2019), except that additional exceedances were noticed for Cr_{total} and F, but no exceedance for As during this assessment. Although the CDR Slimes material is derived from the same CDR processing facility, four analytical assessments indicated that the CDR Slimes material is heterogenous in composition, both vertically and horizontally due to variations in steel grade, composition of raw material used as well as operational parameters.

5.2. **Recommendations**

A review of previously conducted geochemical studies together with results obtained during this geochemical assessment indicated that most samples were classified as Type 3 waste. However, one composite sample from sampling campaign A (EnviroSim, 2019) and one profile sample of this sampling campaign was classified as Type 1 waste based on the Cr(VI) concentration. Since no distinct layering could be associated with elevated Cr and Cr(VI) concentrations, there exist opportunity to classify the CDR slimes spatially during excavation of the material. It is recommended to:

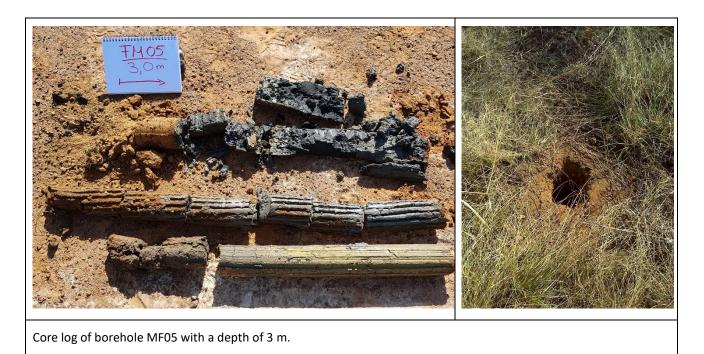
- Distinguish the CDR slimes dam into waste Class C and Class A areas, based on a sampling grid using initially only total Cr as a criteria to flag areas of concern.
- A waste classification of the flagged areas should follow thereafter to confirm the classification. All Class A areas should then be excavated and disposed of at a licensed disposal facility. The remaining Class C areas material will be excavated and transported to existing plant (process) operations.
- Material should be excavated up to the (pre-deposition) host rock/soil.
 - Initiate soil sampling after removal of the CDR slimes material to assess potential secondary sources and apply a risk-based approach to advice on future remediation (if required).
 - The soil sampling results will be used to inform the further classification of the material and additional excavation specifications.

6. References


- Delta H, 2019. Samancor Middelburg Ferrochrome-Review of Chrome Direct Reduction Slimes Waste Classification. Report number. Delh.2019.014-13
- ENVASS. 2012. Samancor 30CDR Slimes dam Hydrogeological Investigation. GEO Pollution Technologies, Gauteng. 53pp.
- EnviroSim Consulting, 2019. Waste Classification and Site Risk Characterisation of the MFC CDR Slimes Disposal Area. Report number KPC-02-2018-B.
- Golder Associates Africa (Pty) Ltd. 2011. Middelburg Ferrochrome, A Division Of Samancor Chrome LTD: Delineation of Groundwater Pollution Plumes and Predictions of Plume Migration Rev1. 115pp.
- Golder Associates Africa (Pty) Ltd., 2019. Samancor Chrome-Middelburg Ferrochrome: Classification and assessment of Chrome Direct Reductant Slimes. Report number 19125329-327644-1.
- Interwaste, 2020. Classification of Samancor Chrome, Chrome Direct Reduction (CDR) Slimes Stockpiles in terms of SANS 10234.
- Ma, G. and Garbers-Craig, A.M. 2006. A review on the characteristics, formation mechanisms and treatment processes of Cr(VI)-containing pyrometallurgical wastes. *Journal of the Southern African Institute of Mining and Metallurgy*, 106: 753-763.

Appendix A (geo-sites)

* Note that borehole labels displayed in the images were accidentally transposed to FM instead of MF.



Core log of borehole MF02 with a depth of 5 m.

Core log of borehole MF04 with a depth of 1.8 m.

Appendix B (Core logs)

		MF01			MF02
Depth	Depth		Depth	Depth	
top	bottom		top	bottom	
(mbgl)	(mbgl)	Description	(mbgl)	(mbgl)	Description
0.00	0.15	brown top soil	0.00	0.10	brown top soil
0.15	0.20	dry, powdery black FC	0.10	0.80	interlayered dark-grey/black FC
0.20	1.00	dark grey, moist, clayey FC	0.80	1.00	moist black, powdery FC
		grey/black fine interlayered FC,			
1.00	1.20	moist	1.00	1.20	dark grey, clayey FC
1.20	1.40	black FC	1.20	1.80	dark grey to black FC
1.40	1.80	grey and black interlayered FC	1.80	2.00	Grey, clayey FC
1.80	2.20	black FC, less moist	2.00	2.90	moist grey FC with black layers
		weathered, clayey red-brown			
2.20	2.80	shale	2.90	3.00	moist, black FC
					interlayered weathered
2.80	3.00	brown-orange weathered bedrock	3.00	5.00	shale/mudst/sst
		MF03			MF04
Depth	Depth		Depth	Depth	
top	bottom		top	bottom	
(mbgl)	(mbgl)	Description	(mbgl)	(mbgl)	Description
0.00	0.15	reddish brown top soil	0.00	0.10	red-brown top soil
		interlayered grey and dark grey,			interlayered grey/dark grey,
0.15	0.90	clayey FC	0.10	0.80	clayey FC
0.90	1.00	black FC	0.80	1.00	black FC
					interlayered dark-grey/grey/black
1.00	1.15	grey FC with thin, light-grey layers	1.00	1.40	FC
					weathered bedrock grey-brown
1.15	1.50	black FC	1.40	1.60	with nodules (rhyolite?)
					weathered orange-brown
1.50	2.30	weathered sst/mudst/shale	1.60	1.80	shale/sst
	_	MF03			
Depth	Depth				
top	bottom				
(mbgl)	(mbgl)	Description			
0.00	0.20	reddish brown top soil			
0.20	0.40	interlayered grey and black FC			
0.40	0.70	black, powdery FC			
0.70	0.90	grey FC			
0.90	1.00	black FC			
1.00	1.80	grey, clayey FC			
1.80	2.00	light grey FC			
		weathered, clayey bedrock			
2.00	3.00	(interlayered sst/ mudst/shale)			

Appendix Table 1: Core logs obtained via push rig window sampling of the CDR Slimes; lithologies are denoted as FC=filter cake, mudst=mudstone and sst=sandstone.

Appendix C (Laboratory certificates)

Sample Id	Sample number	Sn	Sn	Sr	Sr	Та	Та
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.400	<0.001	<0.400	<0.001	<0.400
MF1 0-1m	96716	0.005	2.00	0.056	22	<0.001	<0.400
MF1 1-2m	96717	0.007	2.80	0.061	24	<0.001	<0.400
MF2 0.5-1m	96718	0.003	1.20	0.084	34	<0.001	<0.400
MF2 2-2.5m	96719	0.004	1.60	0.063	25	<0.001	<0.400
MF2 3-4m	96720	<0.001	<0.400	0.021	8.40	<0.001	<0.400
MF3 0.5-1.5m	96721	0.003	1.20	0.031	12	<0.001	<0.400
MF4 0.5-1.5m	96722	0.003	1.20	0.052	21	<0.001	<0.400
MF5 0.2-0.8m	96723	0.008	3.20	0.125	50	<0.001	<0.400
MF5 1-2m	96724	0.003	1.20	0.043	17	<0.001	<0.400

Sample Id	Sample number	Tb	Tb	Te	Те	Th	Th
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.400	<0.001	<0.400	<0.001	<0.400
MF1 0-1m	96716	<0.001	<0.400	<0.001	<0.400	0.006	2.40
MF1 1-2m	96717	0.001	0.400	<0.001	<0.400	0.020	8.00
MF2 0.5-1m	96718	0.001	0.400	<0.001	<0.400	0.015	6.00
MF2 2-2.5m	96719	<0.001	<0.400	<0.001	<0.400	0.003	1.20
MF2 3-4m	96720	0.001	0.400	<0.001	<0.400	0.022	8.80
MF3 0.5-1.5m	96721	<0.001	<0.400	<0.001	<0.400	0.003	1.20
MF4 0.5-1.5m	96722	<0.001	<0.400	<0.001	<0.400	0.005	2.00
MF5 0.2-0.8m	96723	0.002	0.800	<0.001	<0.400	0.042	17
MF5 1-2m	96724	<0.001	<0.400	<0.001	<0.400	0.007	2.80

Sample Id	Sample number	Ti	Ti	TI	TI	Tm	Tm
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.400	<0.001	<0.400	<0.001	<0.400
MF1 0-1m	96716	0.688	275	0.003	1.20	<0.001	<0.400
MF1 1-2m	96717	9.28	3712	0.003	1.20	0.001	0.400
VF2 0.5-1m	96718	5.42	2168	0.011	4.40	0.001	0.400
MF2 2-2.5m	96719	0.679	272	0.003	1.20	<0.001	<0.400
VF2 3-4m	96720	23	9396	0.001	0.400	0.001	0.400
MF3 0.5-1.5m	96721	1.78	712	0.009	3.60	<0.001	<0.400
MF4 0.5-1.5m	96722	2.75	1100	0.012	4.80	<0.001	<0.400
MF5 0.2-0.8m	96723	10	4002	0.012	4.80	0.001	0.400
MF5 1-2m	96724	1.93	772	0.003	1.20	<0.001	<0.400

Sample Id	Sample number	U	U	W	W	Y	Y
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.400	<0.001	<0.400	<0.001	<0.400
MF1 0-1m	96716	0.001	0.400	0.089	36	0.001	0.400
MF1 1-2m	96717	0.013	5.20	0.109	44	0.007	2.80
MF2 0.5-1m	96718	0.008	3.20	0.107	43	0.006	2.40
MF2 2-2.5m	96719	0.001	0.400	0.072	29	0.001	0.400
MF2 3-4m	96720	0.007	2.80	0.117	47	0.006	2.40
MF3 0.5-1.5m	96721	0.002	0.800	0.035	14	0.001	0.400
MF4 0.5-1.5m	96722	0.004	1.60	0.035	14	0.002	0.800
MF5 0.2-0.8m	96723	0.022	8.80	0.033	13	0.015	6.00
MF5 1-2m	96724	0.004	1.60	0.179	72	0.002	0.800

Sample Id	Sample number	Yb	Yb	Zr	Zr
		mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.400	<0.001	<0.400
MF1 0-1m	96716	0.002	0.800	<0.001	<0.400
MF1 1-2m	96717	0.005	2.00	0.082	33
MF2 0.5-1m	96718	0.005	2.00	0.006	2.40
MF2 2-2.5m	96719	0.002	0.800	<0.001	<0.400
MF2 3-4m	96720	0.006	2.40	0.047	19
MF3 0.5-1.5m	96721	0.002	0.800	<0.001	<0.400
MF4 0.5-1.5m	96722	0.003	1.20	<0.001	<0.400
MF5 0.2-0.8m	96723	0.010	4.00	0.064	26
MF5 1-2m	96724	0.002	0.800	<0.001	<0.400

[*] Elements analysed on the ICP-OES Instrument

Sample Id	Sample number	lr	lr	K*	K*	La	La
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.400	<0.5	<200	<0.001	<0.400
MF1 0-1m	96716	<0.001	<0.400	18	7200	0.002	0.800
MF1 1-2m	96717	<0.001	<0.400	4.1	1654	0.003	1.20
MF2 0.5-1m	96718	<0.001	<0.400	32	12800	0.006	2.40
MF2 2-2.5m	96719	<0.001	<0.400	19	7600	0.003	1.20
MF2 3-4m	96720	<0.001	<0.400	11	4400	0.008	3.20
MF3 0.5-1.5m	96721	<0.001	<0.400	23	9200	0.001	0.400
MF4 0.5-1.5m	96722	<0.001	<0.400	25	10000	0.002	0.800
MF5 0.2-0.8m	96723	<0.001	<0.400	8.0	3198	0.021	8.40
MF5 1-2m	96724	<0.001	<0.400	19	7600	0.003	1.20

Sample Id	Sample number	Li	Li	Lu	Lu	Mg*	Mg*
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.400	<0.001	<0.400	<1	<400
MF1 0-1m	96716	0.054	22	<0.001	<0.400	28	11200
MF1 1-2m	96717	0.075	30	0.001	0.400	25	10000
MF2 0.5-1m	96718	0.088	35	0.001	0.400	135	54000
MF2 2-2.5m	96719	0.071	28	<0.001	<0.400	41	16400
MF2 3-4m	96720	0.084	34	0.001	0.400	12	4800
MF3 0.5-1.5m	96721	0.103	41	<0.001	<0.400	133	53200
MF4 0.5-1.5m	96722	0.089	36	<0.001	<0.400	160	64000
MF5 0.2-0.8m	96723	0.136	54	0.001	0.400	128	51200
MF5 1-2m	96724	0.078	31	<0.001	<0.400	36	14400

Sample Id	Sample number	Mn*	Mn*	Na*	Na*	Nb	Nb
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.025	<10	<0.025	<10	<0.001	<0.400
MF1 0-1m	96716	2.30	919	2	800	<0.001	<0.400
MF1 1-2m	96717	0.830	332	2	800	0.002	0.800
MF2 0.5-1m	96718	10	4059	28	11200	<0.001	<0.400
MF2 2-2.5m	96719	2.26	904	6	2400	<0.001	<0.400
VF2 3-4m	96720	4.13	1653	4	1600	<0.001	<0.400
MF3 0.5-1.5m	96721	12	4894	9	3600	<0.001	<0.400
MF4 0.5-1.5m	96722	13	5193	14	5600	<0.001	<0.400
WF5 0.2-0.8m	96723	4.38	1751	4	1600	<0.001	<0.400
MF5 1-2m	96724	2.39	957	3	1200	<0.001	<0.400

Sample Id	Sample number	Nd	Nd	Os	Os	Р	Р
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.400	<0.001	<0.400	<0.001	<0.400
MF1 0-1m	96716	0.002	0.800	0.001	0.400	1.50	599
MF1 1-2m	96717	0.006	2.40	0.001	0.400	0.875	350
MF2 0.5-1m	96718	0.006	2.40	0.001	0.400	1.56	622
MF2 2-2.5m	96719	0.003	1.20	<0.001	<0.400	1.60	641
MF2 3-4m	96720	0.010	4.00	<0.001	<0.400	1.65	659
MF3 0.5-1.5m	96721	0.001	0.400	<0.001	<0.400	1.89	756
MF4 0.5-1.5m	96722	0.002	0.800	<0.001	<0.400	1.87	748
MF5 0.2-0.8m	96723	0.021	8.40	0.001	0.400	2.67	1067
MF5 1-2m	96724	0.003	1.20	<0.001	<0.400	1.69	676

Sample Id	Sample number	Pd	Pd	Pr	Pr	Pt	Pt
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.400	<0.001	<0.400	<0.001	<0.400
MF1 0-1m	96716	<0.001	<0.400	<0.001	<0.400	<0.001	<0.400
MF1 1-2m	96717	0.001	0.400	0.001	0.400	0.001	0.400
MF2 0.5-1m	96718	<0.001	<0.400	0.001	0.400	0.001	0.400
MF2 2-2.5m	96719	<0.001	<0.400	0.001	0.400	<0.001	<0.400
MF2 3-4m	96720	<0.001	<0.400	0.002	0.800	<0.001	<0.400
MF3 0.5-1.5m	96721	<0.001	<0.400	<0.001	<0.400	<0.001	<0.400
MF4 0.5-1.5m	96722	<0.001	<0.400	<0.001	<0.400	<0.001	<0.400
MF5 0.2-0.8m	96723	<0.001	<0.400	0.005	2.00	<0.001	<0.400
MF5 1-2m	96724	<0.001	<0.400	0.001	0.400	<0.001	<0.400

Sample Id	Sample number	Rb	Rb	Rh	Rh	Ru	Ru
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.400	<0.001	<0.400	<0.001	<0.400
MF1 0-1m	96716	0.020	8.00	<0.001	<0.400	<0.001	<0.400
MF1 1-2m	96717	<0.001	<0.400	<0.001	<0.400	<0.001	<0.400
MF2 0.5-1m	96718	0.036	14.400	<0.001	<0.400	<0.001	<0.400
MF2 2-2.5m	96719	0.018	7.200	<0.001	<0.400	<0.001	<0.400
MF2 3-4m	96720	0.015	6.000	<0.001	<0.400	<0.001	<0.400
MF3 0.5-1.5m	96721	0.025	10.000	<0.001	<0.400	<0.001	<0.400
MF4 0.5-1.5m	96722	0.029	11.600	<0.001	<0.400	<0.001	<0.400
MF5 0.2-0.8m	96723	0.010	4.000	<0.001	<0.400	<0.001	<0.400
MF5 1-2m	96724	0.022	8.800	<0.001	<0.400	<0.001	<0.400

Sample Id	Sample number	Sc	Sc	Si*	Si*	Sm	Sm
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.400	<0.2	<80	<0.001	<0.400
MF1 0-1m	96716	0.006	2.40	944	377600	0.001	0.400
MF1 1-2m	96717	0.027	11	182	72800	0.003	1.20
MF2 0.5-1m	96718	0.022	8.80	163	65200	0.002	0.800
MF2 2-2.5m	96719	0.055	22	841	336400	0.001	0.400
MF2 3-4m	96720	0.042	17	670	268000	0.003	1.20
MF3 0.5-1.5m	96721	0.006	2.40	581	232400	<0.001	<0.400
MF4 0.5-1.5m	96722	0.009	3.60	352	140800	0.001	0.400
MF5 0.2-0.8m	96723	0.037	15	284	113600	0.006	2.40
MF5 1-2m	96724	0.006	2.40	876	350400	0.001	0.400

WATERLAB (PTY) LTD CERTIFICATE OF ANALYSES ICP QUANTITATIVE ANALYSIS

Date received: Project number:	2020/06/11 1000				Date Completed: Report number:	
Client name: Adress:	Delta H PO Box 11465, S	ilver Lakes, 0054			Contact person: Contact person: Email: Email: Cell: Cell:	Dr Martin Holland T. Rossouw martin@delta-h.co.za theo@delta-h.co.za 082 497 9088 072 365 4613
Extract	Sample Dry Mass	Volume	Mass (g/l)	Factor]	
HNO3 : HF	0.25	100	2.5	400		

Sample Id	Sample number	Ag	Ag	Al*	Al*	Au	Au
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.400	<0.100	<40	<0.001	<0.400
MF1 0-1m	96716	0.003	1.20	18	7200	<0.001	<0.400
MF1 1-2m	96717	<0.001	<0.400	112	44800	<0.001	<0.400
MF2 0.5-1m	96718	<0.001	<0.400	83	33200	<0.001	<0.400
MF2 2-2.5m	96719	<0.001	<0.400	21	8400	<0.001	<0.400
MF2 3-4m	96720	<0.001	<0.400	157	62800	<0.001	<0.400
MF3 0.5-1.5m	96721	<0.001	<0.400	44	17600	<0.001	<0.400
MF4 0.5-1.5m	96722	<0.001	<0.400	61	24400	<0.001	<0.400
MF5 0.2-0.8m	96723	<0.001	<0.400	162	64800	<0.001	<0.400
MF5 1-2m	96724	<0.001	<0.400	33	13200	<0.001	<0.400

Sample Id	Sample number	Be	Be	Bi	Bi	Ca*	Ca*
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.400	<0.001	<0.400	<1	<400
MF1 0-1m	96716	0.003	1.20	0.004	1.60	26	10400
MF1 1-2m	96717	0.015	6.00	0.011	4.40	30	12000
MF2 0.5-1m	96718	0.011	4.40	0.012	4.80	56	22400
MF2 2-2.5m	96719	0.005	2.00	0.002	0.800	61	24400
MF2 3-4m	96720	0.005	2.00	0.001	0.400	12	4800
MF3 0.5-1.5m	96721	0.006	2.40	0.007	2.80	25	10000
MF4 0.5-1.5m	96722	0.007	2.80	0.012	4.80	48	19200
MF5 0.2-0.8m	96723	0.030	12	0.017	6.80	51	20400
MF5 1-2m	96724	0.005	2.00	0.003	1.20	26	10400

Sample Id	Sample number	Ce	Ce	Cs	Cs	Dy	Dy
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.400	<0.001	<0.400	<0.001	<0.400
MF1 0-1m	96716	0.007	2.80	0.004	1.60	0.001	0.400
MF1 1-2m	96717	0.010	4.00	<0.001	<0.400	0.007	2.80
MF2 0.5-1m	96718	0.013	5.20	0.002	0.800	0.008	3.20
MF2 2-2.5m	96719	0.008	3.20	0.005	2.00	0.001	0.400
MF2 3-4m	96720	0.041	16	0.001	0.400	0.011	4.40
MF3 0.5-1.5m	96721	0.003	1.20	0.003	1.20	0.002	0.800
MF4 0.5-1.5m	96722	0.006	2.40	0.003	1.20	0.003	1.20
MF5 0.2-0.8m	96723	0.048	19	0.002	0.800	0.017	6.80
MF5 1-2m	96724	0.017	6.80	0.003	1.20	0.002	0.800

Sample Id	Sample number	Er	Er	Eu	Eu	Fe*	Fe*
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.400	<0.001	<0.400	<0.025	<10
MF1 0-1m	96716	0.001	0.400	<0.001	<0.400	57	22800
MF1 1-2m	96717	0.005	2.00	0.001	0.400	92	36800
MF2 0.5-1m	96718	0.005	2.00	<0.001	<0.400	213	85200
MF2 2-2.5m	96719	0.001	0.400	<0.001	<0.400	42	16800
MF2 3-4m	96720	0.006	2.40	0.001	0.400	244	97600
MF3 0.5-1.5m	96721	0.001	0.400	<0.001	<0.400	21	8400
MF4 0.5-1.5m	96722	0.002	0.800	<0.001	<0.400	280	112000
MF5 0.2-0.8m	96723	0.011	4.40	0.001	0.400	152	60800
MF5 1-2m	96724	0.001	0.400	<0.001	<0.400	109	43600

Sample Id	Sample number	Ga	Ga	Gd	Gd	Ge	Ge
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.400	<0.001	<0.400	<0.001	<0.400
MF1 0-1m	96716	0.075	30	0.001	0.40	0.005	2.00
MF1 1-2m	96717	0.072	29	0.004	1.60	0.010	4.00
MF2 0.5-1m	96718	0.277	111	0.003	1.20	0.013	5.20
MF2 2-2.5m	96719	0.042	17	0.001	0.400	0.003	1.20
MF2 3-4m	96720	0.032	13	0.004	1.60	0.001	0.400
MF3 0.5-1.5m	96721	0.263	105	0.001	0.400	0.010	4.00
MF4 0.5-1.5m	96722	0.306	122	0.001	0.400	0.013	5.20
MF5 0.2-0.8m	96723	0.199	80	0.010	4.00	0.020	8.00
MF5 1-2m	96724	0.064	26	0.002	0.800	0.004	1.60

Sample Id	Sample number	Hf	Hf	Но	Но	In	In
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.400	<0.001	<0.400	<0.001	<0.400
MF1 0-1m	96716	0.034	14	<0.001	<0.400	<0.001	<0.400
MF1 1-2m	96717	0.029	12	0.002	0.800	<0.001	<0.400
VF2 0.5-1m	96718	0.011	4.40	0.002	0.800	<0.001	<0.400
VF2 2-2.5m	96719	<0.001	<0.400	<0.001	<0.400	<0.001	<0.400
VF2 3-4m	96720	0.030	12	0.002	0.800	<0.001	<0.400
VF3 0.5-1.5m	96721	0.001	0.400	<0.001	<0.400	<0.001	<0.400
MF4 0.5-1.5m	96722	0.003	1.20	0.001	0.400	<0.001	<0.400
WF5 0.2-0.8m	96723	0.033	13	0.004	1.60	<0.001	<0.400
MF5 1-2m	96724	0.002	0.800	0.001	0.400	<0.001	<0.400

23B De Havilland Crescent Telephone: +2712 - 349 - 1066 Persequor Techno Park, Mering Naudé Road, Pretoria Facsimile: +2712 - 349 - 2064 P.O. Box 283, 0020 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES Digestion AS 4439.3

Date received:	2020/06/11	Report number: 92197	Date completed:	2020/07/06
Project number:	1000		Order number:	Delh.2020.001-17(v2) Middelburg Ferrochrome
Client name: Address: Telephone:	Deita H PO Box 11465, Silver Lakes, 0054 		Contact person: Contact person: Email: Email: Cell: Cell: Cell:	Dr Martin Holland T. Rossouw martin@delta-h.co.za theo@delta-h.co.za 082 497 9088 072 365 4613

Analyses	N	IF1	М	F1	М	F2	М	F2	M	F2			
Analyses	0-	1m	1-3	2m	0.5	-1m	2-2	.5m	3-4	lm			
Sample Number	96	716	96	717	96	718	96	719	96	720			
Digestion	HNO	3 : HF	HNO	3 : HF	HNO	3 : HF	HNO	3 : HF	HNO3 : HF				
Dry Mass Used (g)	0.	25	0.	25	0.	25	0.	25	0.	25	TCT0 mg/kg	TCT1 mg/kg	TCT2 mg/kg
Volume Used (mℓ)	1	00	1	00	1	D0	1	00	10	00			
Units	mg/ℓ	mg/kg	mg/ℓ	mg/kg	mg/ℓ	mg/kg	mg/ℓ	mg/kg	mg/ℓ	mg/kg			
As, Arsenic	<0.001	<0.400	0.002	0.800	0.003	1	<0.001	<0.400	0.001	0.400	5.8	500	2000
B, Boron	<0.025	<10	0.089	36	0.171	68	0.146	58	0.033	13	150	15000	6000
Ba, Barium	0.295	118	0.565	226	0.545	218	0.239	96	0.812	325	62.5	6250	25000
Cd, Cadmium	<0.001	<0.400	<0.001	<0.400	<0.001	<0.400	<0.001	<0.400	<0.001	<0.400	7.5	260	1040
Co, Cobalt	0.045	18	0.136	54	0.319	128	<0.025	<10	0.148	59	50	5000	20000
Cr _{Total,} Chromium Total	30	12000	60	24000	197	78800	23	9200	0.736	294	46000	800000	N/A
Cu, Copper	<0.010	<4.00	0.027	11	0.176	70	<0.010	<4.00	0.235	94	16	19500	78000
Hg, Mercury	<0.001	<0.400	<0.001	<0.400	<0.001	<0.400	<0.001	<0.400	<0.001	<0.400	0.93	160	640
Mn, Manganese	2.14	856	0.72	287	10.00	4000	2.11	844	3.59	1436	1000	25000	100000
Mo, Molybdenum	<0.025	<10	<0.025	<10	<0.025	<10	<0.025	<10	<0.025	<10	40	1000	4000
Ni, Nickel	0.323	129	0.440	176	1.340	536	0.181	72	0.112	45	91	10600	42400
Pb, Lead	0.144	58	0.442	177	0.385	154	0.134	54	0.097	39	20	1900	7600
Sb, Antimony	<0.001	<0.400	<0.001	<0.400	<0.001	<0.400	<0.001	<0.400	<0.001	<0.400	10	75	300
Se, Selenium	<0.001	<0.400	0.001	0.400	<0.001	<0.400	<0.001	<0.400	<0.001	<0.400	10	50	200
V, Vanadium	< 0.025	<10	0.452	181	0.840	336	<0.025	<10	0.734	294	150	2680	10720
Zn, Zinc	7.17	2868	16	6400	32	12800	5.10	2040	0.286	114	240	160000	640000
Inorganic Anions	mg/ℓ	mg/kg	mg/ℓ	mg/kg	mg/ℓ	mg/kg	mg/ℓ	mg/kg	mg/ℓ	mg/kg			
Chloride as CI [o]		562.40		<20		1431.00		40.55		94.16			
Sulphate as SO ₄ [o]		24161.00		16813.00		25848.00		475.10		1051.00			
Nitrate as N [o]	-	13.29		155.80		22.46		5.80		19.50			
Total Fluoride [o]	-	19.91		106.60		31.05		105.60		46.37	100	10000	40000
Cr(VI), Chromium (VI) Total [o]		<2		9.20		<2		22.40		<2	6.5	500	2000
Total Cyanide as CN [o]		9.6		2.2		13		<0.5		<0.5	14	10500	42000

	М	F3	M	F4	м	F5	м	F5			
Analyses	0.5-	1.5m	0.5-	1.5m	0.2-	0.8m	1-	2m			
Sample Number	96	721	96	722	96	723	96	724			
Digestion	HNO	3 : HF	HNO	3 : HF	HNO	3 : HF	HNO	3 : HF			
Dry Mass Used (g)	0.	25	0.	25	0.	25	0.25 100		TCT0 mg/kg	TCT1 mg/kg	TCT2 mg/kg
Volume Used (mℓ)	1	00	1	00	1	00			100		
Units	mg/ℓ	mg/kg	mg/ℓ	mg/kg	mg/ℓ	mg/kg	mg/ℓ	mg/kg	1		
As, Arsenic	0.001	0.400	0.001	0.400	0.006	2.40	0.002	0.800	5.8	500	2000
B, Boron	0.080	32	0.096	38	0.258	103	0.088	35	150	15000	6000
Ba, Barium	0.182	73	0.255	102	0.999	400	0.303	121	62.5	6250	25000
Cd, Cadmium	<0.001	<0.400	< 0.001	<0.400	< 0.001	<0.400	< 0.001	<0.400	7.5	260	1040
Co, Cobalt	0.314	126	0.442	177	0.260	104	0.080	32	50	5000	20000
Cr _{Total,} Chromium Total	178	71200	224	89600	100	40000	23	9200	46000	800000	N/A
Cu, Copper	0.078	31	0.192	77	0.113	45	<0.010	<4.00	16	19500	78000
Hg, Mercury	< 0.001	<0.400	< 0.001	<0.400	< 0.001	<0.400	< 0.001	<0.400	0.93	160	640
Mn, Manganese	11	4400	12	4800	4.10	1640	2.21	884	1000	25000	100000
Mo, Molybdenum	< 0.025	<10	<0.025	<10	<0.025	<10	<0.025	<10	40	1000	4000
Ni, Nickel	1.41	564	1.85	740	1.150	460	0.332	133	91	10600	42400
Pb, Lead	0.488	195	0.475	190	0.566	226	0.176	70	20	1900	7600
Sb, Antimony	< 0.001	<0.400	< 0.001	<0.400	< 0.001	<0.400	< 0.001	<0.400	10	75	300
Se, Selenium	0.001	0.400	< 0.001	<0.400	< 0.001	<0.400	< 0.001	<0.400	10	50	200
V, Vanadium	0.619	248	0.773	309	0.646	258	0.055	22	150	2680	10720
Zn, Zinc	28	11200	32	12800	38	15200	7.13	2852	240	160000	640000
Inorganic Anions	mg/ℓ	mg/kg	mg/ℓ	mg/kg	mg/ℓ	mg/kg	mg/ℓ	mg/kg			
Chloride as CI [o]		116.00		871.40		244.00		68.22			
Sulphate as SO ₄ [o]		8539.00		7087.00		4724.00		2888.00	1		
Nitrate as N [o]		62.47		21.55		89.75		11.82]		
Total Fluoride [o]		48.56		44.86		100.70		185.80	100	10000	40000
Cr(VI), Chromium (VI) Total [o]		186.80		104.40		4.40		12.80	6.5	500	2000
Total Cyanide as CN [o]		1.2		4.6		2.7		<0.5	14	10500	42000

S. Laubscher

23B De Havilland Crescent Perseguor Techno Park, Meiming Naudé Road, Pretoria P.O. Box 283, 0020

CERTIFICATE OF ANALYSES EXTRACTIONS AS 4439.3

Date received: Project number:	2020/06/11 1000	Report number: 92197	Date completed: Order number:	2020/07/06 Delh.2020.001-17(v2) Middelburg Ferrochrome
Client name:	Delta H		Contact person:	Dr Martin Holland
Address:	PO Box 11465, Silver Lak	es, 0054	Contact person:	T. Rossouw
Telephone:			Email:	martin@delta-h.co.za
			Email:	theo@delta-h.co.za
			Cell:	082 497 9088
			Cell:	072 365 4613

A	MF1	MF1	MF2	MF2	MF2	MF3	MF4	MF5	MF5				
Analyses	0-1m	1-2m	0.5-1m	2-2.5m	3-4m	0.5-1.5m	0.5-1.5m	0.2-0.8m	1-2m				
Sample Number	96716	96717	96718	96719	96720	96721	96722	96723	96724				
TCLP / Borax / Distilled Water	Distilled Water	Distilled Water	Distilled Water	Distilled Water	Distilled Water	Distilled Water	Distilled Water	Distilled Water	Distilled Water				
Ratio*	1:20	1:20	1:20	1:20	1:20	1:20	1:20	1:20	1:20				
Units	mg/ℓ	LCT0 mg/l	LCT1 mg/l	LCT2 mg/l	LCT3 mg/l								
As, Arsenic	0.003	<0.001	<0.001	<0.001	0.001	<0.001	0.003	0.001	0.002	0.01	0.5	1	4
B, Boron	0.070	0.075	0.129	0.233	0.149	0.158	0.152	0.188	0.106	0.5	25	50	200
Ba, Barium	<0.025	0.032	0.051	<0.025	0.063	<0.025	<0.025	0.067	<0.025	0.7	35	70	280
Cd, Cadmium	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	<0.001	<0.001	0.003	0.15	0.3	1.2
Co, Cobalt	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.5	25	50	200
Cr _{Total} , Chromium Total	1.63	0.176	<0.025	0.065	<0.025	4.93	0.176	0.126	0.216	0.1	5	10	40
Cr(VI), Chromium (VI)	1.61	0.157	<0.010	0.055	<0.010	5.10	<0.010	0.116	0.178	0.05	2.5	5	20
Cu, Copper	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	2.0	100	200	800
Hg, Mercury	<0.001	< 0.001	0.001	<0.001	<0.001	< 0.001	0.001	<0.001	<0.001	0.006	0.3	0.6	2.4
Mn, Manganese	<0.025	0.041	<0.025	<0.025	0.066	<0.025	0.062	<0.025	<0.025	0.5	25	50	200
Mo, Molybdenum	<0.025	<0.025	0.068	<0.025	<0.025	<0.025	0.030	< 0.025	<0.025	0.07	3.5	7	28
Ni, Nickel	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.07	3.5	7	28
Pb, Lead	0.001	< 0.001	0.001	< 0.001	0.001	0.001	0.006	< 0.001	<0.001	0.01	0.5	1	4
Sb, Antimony	0.001	< 0.001	0.004	0.003	<0.001	0.001	0.014	0.001	0.001	0.02	1.0	2	8
Se, Selenium	0.001	< 0.001	< 0.001	< 0.001	0.001	< 0.001	0.002	< 0.001	<0.001	0.01	0.5	1	4
V, Vanadium	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.2	10	20	80
Zn, Zinc	0.026	1.03	<0.025	<0.025	<0.025	0.067	0.253	<0.025	<0.025	5.0	250	500	2000
Inorganic Anions	mg/ℓ												
Total Dissolved Solids*	72	922	854	1796	104	354	384	210	146	1000	12 500	25 000	100 000
Chloride as Cl	<2	<2	20	13	6	4	15	<2	<2	300	15 000	30 000	120 000
Sulphate as SO4	9	640	548	1195	38	177	113	95	70	250	12 500	25 000	100 000
Nitrate as N	0.2	0.3	<0.1	0.1	<0.1	1.2	<0.1	<0.1	0.1	11	550	1100	4400
Fluoride as F	1.0	0.6	1.5	0.4	1.6	1.0	1.6	3.0	1.3	1.5	75	150	600
Paste pH	8.3	5.8	9.7	9.8	7.4	8.6	9.3	8.9	8.6				
Moisture %	47.3	45.7	38.3	55.6	15.8	46.6	31.9	42.6	57.3				
Acid Base Accounting				See atta	ched report 92	197 ABA							
Net Acid Generation				See atta	ched report 92	197 NAG							
Sulphur Speciation				See att	ached report 92	2197 SS							
X-ray Diffraction [o]				See atta	ched report 92	197 XRD							
Total Organic & Inorganic Carbon [o]				See atta	ched report 92	197 TOC							
rotal Organic & morganic Carbon [0]				See alla	uneu report 92	13/ 100							

Analyses	MF1	MF1	MF2	MF2	MF2	MF3	MF4	MF5	MF5				
Anaryses	0-1m	1-2m	0.5-1m	2-2.5m	3-4m	0.5-1.5m	0.5-1.5m	0.2-0.8m	1-2m				
Sample Number	96716	96717	96718	96719	96720	96721	96722	96723	96724				
TCLP / Borax / Distilled Water	Distilled Water	Distilled Water	Distilled Water	Distilled Water	Distilled Water	Distilled Water	Distilled Water	Distilled Water	Distilled Water				
Ratio*	1:4	1:4	1:4	1:4	1:4	1:4	1:4	1:4	1:4				
Units	mg/ℓ	LCT0 mg/l	LCT1 mg/l	LCT2 mg/l	LCT3 mg/l								
As, Arsenic	0.002	<0.001	< 0.001	0.002	0.001	< 0.001	0.001	< 0.001	< 0.001	0.01	0.5	1	4
B, Boron	0.193	0.454	0.319	0.767	0.215	0.268	0.334	0.743	0.407	0.5	25	50	200
Ba, Barium	<0.025	<0.025	0.039	0.033	0.036	<0.025	<0.025	0.034	0.029	0.7	35	70	280
Cd, Cadmium	<0.001	<0.001	< 0.001	<0.001	<0.001	< 0.001	<0.001	< 0.001	< 0.001	0.003	0.15	0.3	1.2
Co, Cobalt	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.5	25	50	200
Cr _{Total,} Chromium Total	7.17	0.366	< 0.025	0.121	<0.025	24	0.078	0.164	0.559	0.1	5	10	40
Cr(VI), Chromium (VI)	2.80	0.372	<0.010	0.101	<0.010	16.3	<0.010	0.169	1.49	0.05	2.5	5	20
Cu, Copper	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	2.0	100	200	800
Hg, Mercury	<0.001	<0.001	0.030	0.005	0.004	< 0.001	0.021	<0.001	< 0.001	0.006	0.3	0.6	2.4
Mn, Manganese	<0.025	0.291	<0.025	<0.025	0.034	<0.025	<0.025	<0.025	<0.025	0.5	25	50	200
Mo, Molybdenum	<0.025	<0.025	0.414	0.099	0.036	<0.025	0.127	0.085	0.038	0.07	3.5	7	28
Ni, Nickel	<0.025	0.044	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.07	3.5	7	28
Pb, Lead	<0.001	<0.001	0.001	<0.001	<0.001	< 0.001	0.001	< 0.001	< 0.001	0.01	0.5	1	4
Sb, Antimony	0.003	<0.001	0.006	0.014	<0.001	0.002	0.025	< 0.001	0.002	0.02	1.0	2	8
Se, Selenium	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	<0.001	<0.001	0.01	0.5	1	4
V, Vanadium	<0.025	<0.025	<0.025	0.048	<0.025	<0.025	<0.025	<0.025	<0.025	0.2	10	20	80
Zn, Zinc	<0.025	10	<0.025	<0.025	<0.025	0.041	0.033	<0.025	<0.025	5.0	250	500	2000
Inorganic Anions	mg/ℓ												
Total Dissolved Solids	225*	2408	4342	2430	414	1501*	1118	902	574*	1000	12 500	25 000	100 000
Chloride as Cl	2	<2	125	55	14	14	36	4	5	300	15 000	30 000	120 000
Sulphate as SO4	47	1411	2667	1389	133	897	460	365	262	250	12 500	25 000	100 000
Nitrate as N	0.2	2.2	<0.1	0.3	0.3	2.3	0.1	0.1	0.4	11	550	1100	4400
Fluoride as F	3.3	4.0	4.2	1.0	3.2	2.1	4.9	5.0	2.4	1.5	75	150	600
Fluoride as F	3.3	4.0	4.2	1.0	3.2	2.1	4.9	5.0	2.4	1.5	75	150	

[o] = Outsourced [*] = Taken from Electrical Conductivity

S. Laubscher_____ Assistant Geochemistry Project Manager

23B De Havilland Crescent Perseguor Techno Park, Meiming Naudé Road, Pretoria P.O. Box 283, 0020

CERTIFICATE OF ANALYSES EXTRACTIONS AS 4439.3

Date received: Project number:	2020/06/11 1000	Report number: 92197	Date completed: Order number:	2020/07/06 Delh.2020.001-17(v2) Middelburg Ferrochrome
Client name:	Delta H		Contact person:	Dr Martin Holland
Address:	PO Box 11465, Silver Lak	es, 0054	Contact person:	T. Rossouw
Telephone:			Email:	martin@delta-h.co.za
			Email:	theo@delta-h.co.za
			Cell:	082 497 9088
			Cell:	072 365 4613

A	MF1	MF1	MF2	MF2	MF2	MF3	MF4	MF5	MF5				
Analyses	0-1m	1-2m	0.5-1m	2-2.5m	3-4m	0.5-1.5m	0.5-1.5m	0.2-0.8m	1-2m				
Sample Number	96716	96717	96718	96719	96720	96721	96722	96723	96724				
TCLP / Borax / Distilled Water	Distilled Water	Distilled Water	Distilled Water	Distilled Water	Distilled Water	Distilled Water	Distilled Water	Distilled Water	Distilled Water				
Ratio*	1:20	1:20	1:20	1:20	1:20	1:20	1:20	1:20	1:20				
Units	mg/ℓ	LCT0 mg/l	LCT1 mg/l	LCT2 mg/l	LCT3 mg/l								
As, Arsenic	0.003	<0.001	<0.001	<0.001	0.001	<0.001	0.003	0.001	0.002	0.01	0.5	1	4
B, Boron	0.070	0.075	0.129	0.233	0.149	0.158	0.152	0.188	0.106	0.5	25	50	200
Ba, Barium	<0.025	0.032	0.051	<0.025	0.063	<0.025	<0.025	0.067	<0.025	0.7	35	70	280
Cd, Cadmium	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	<0.001	<0.001	0.003	0.15	0.3	1.2
Co, Cobalt	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.5	25	50	200
Cr _{Total} , Chromium Total	1.63	0.176	<0.025	0.065	<0.025	4.93	0.176	0.126	0.216	0.1	5	10	40
Cr(VI), Chromium (VI)	1.61	0.157	<0.010	0.055	<0.010	5.10	<0.010	0.116	0.178	0.05	2.5	5	20
Cu, Copper	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	2.0	100	200	800
Hg, Mercury	<0.001	< 0.001	0.001	<0.001	<0.001	< 0.001	0.001	<0.001	<0.001	0.006	0.3	0.6	2.4
Mn, Manganese	<0.025	0.041	<0.025	<0.025	0.066	<0.025	0.062	<0.025	<0.025	0.5	25	50	200
Mo, Molybdenum	<0.025	<0.025	0.068	<0.025	<0.025	<0.025	0.030	<0.025	<0.025	0.07	3.5	7	28
Ni, Nickel	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.07	3.5	7	28
Pb, Lead	0.001	< 0.001	0.001	< 0.001	0.001	0.001	0.006	<0.001	<0.001	0.01	0.5	1	4
Sb, Antimony	0.001	< 0.001	0.004	0.003	<0.001	0.001	0.014	0.001	0.001	0.02	1.0	2	8
Se, Selenium	0.001	< 0.001	< 0.001	< 0.001	0.001	< 0.001	0.002	< 0.001	<0.001	0.01	0.5	1	4
V, Vanadium	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.2	10	20	80
Zn, Zinc	0.026	1.03	<0.025	<0.025	<0.025	0.067	0.253	<0.025	<0.025	5.0	250	500	2000
Inorganic Anions	mg/ℓ												
Total Dissolved Solids*	72	922	854	1796	104	354	384	210	146	1000	12 500	25 000	100 000
Chloride as Cl	<2	<2	20	13	6	4	15	<2	<2	300	15 000	30 000	120 000
Sulphate as SO4	9	640	548	1195	38	177	113	95	70	250	12 500	25 000	100 000
Nitrate as N	0.2	0.3	<0.1	0.1	<0.1	1.2	<0.1	<0.1	0.1	11	550	1100	4400
Fluoride as F	1.0	0.6	1.5	0.4	1.6	1.0	1.6	3.0	1.3	1.5	75	150	600
Paste pH	8.3	5.8	9.7	9.8	7.4	8.6	9.3	8.9	8.6				
Moisture %	47.3	45.7	38.3	55.6	15.8	46.6	31.9	42.6	57.3				
Acid Base Accounting				See atta	ched report 92	197 ABA							
Net Acid Generation				See atta	ched report 92	197 NAG							
Sulphur Speciation				See att	ached report 92	2197 SS							
X-ray Diffraction [o]				See atta	ched report 92	197 XRD							
Total Organic & Inorganic Carbon [o]				See atta	ched report 92	197 TOC							
rotal Organic & morganic Carbon [0]				See alla	uneu report 92	13/ 100							

Analyses	MF1	MF1	MF2	MF2	MF2	MF3	MF4	MF5	MF5				
Anaryses	0-1m	1-2m	0.5-1m	2-2.5m	3-4m	0.5-1.5m	0.5-1.5m	0.2-0.8m	1-2m				
Sample Number	96716	96717	96718	96719	96720	96721	96722	96723	96724				
TCLP / Borax / Distilled Water	Distilled Water	Distilled Water	Distilled Water	Distilled Water	Distilled Water	Distilled Water	Distilled Water	Distilled Water	Distilled Water				
Ratio*	1:4	1:4	1:4	1:4	1:4	1:4	1:4	1:4	1:4				
Units	mg/ℓ	LCT0 mg/l	LCT1 mg/l	LCT2 mg/l	LCT3 mg/l								
As, Arsenic	0.002	<0.001	< 0.001	0.002	0.001	< 0.001	0.001	< 0.001	< 0.001	0.01	0.5	1	4
B, Boron	0.193	0.454	0.319	0.767	0.215	0.268	0.334	0.743	0.407	0.5	25	50	200
Ba, Barium	<0.025	<0.025	0.039	0.033	0.036	<0.025	<0.025	0.034	0.029	0.7	35	70	280
Cd, Cadmium	<0.001	<0.001	< 0.001	<0.001	<0.001	< 0.001	<0.001	< 0.001	< 0.001	0.003	0.15	0.3	1.2
Co, Cobalt	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.5	25	50	200
Cr _{Total,} Chromium Total	7.17	0.366	< 0.025	0.121	< 0.025	24	0.078	0.164	0.559	0.1	5	10	40
Cr(VI), Chromium (VI)	2.80	0.372	<0.010	0.101	<0.010	16.3	<0.010	0.169	1.49	0.05	2.5	5	20
Cu, Copper	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	2.0	100	200	800
Hg, Mercury	<0.001	<0.001	0.030	0.005	0.004	< 0.001	0.021	<0.001	< 0.001	0.006	0.3	0.6	2.4
Mn, Manganese	<0.025	0.291	<0.025	<0.025	0.034	<0.025	<0.025	<0.025	<0.025	0.5	25	50	200
Mo, Molybdenum	<0.025	<0.025	0.414	0.099	0.036	<0.025	0.127	0.085	0.038	0.07	3.5	7	28
Ni, Nickel	<0.025	0.044	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.07	3.5	7	28
Pb, Lead	<0.001	<0.001	0.001	<0.001	< 0.001	< 0.001	0.001	< 0.001	< 0.001	0.01	0.5	1	4
Sb, Antimony	0.003	<0.001	0.006	0.014	< 0.001	0.002	0.025	< 0.001	0.002	0.02	1.0	2	8
Se, Selenium	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	<0.001	<0.001	0.01	0.5	1	4
V, Vanadium	<0.025	<0.025	<0.025	0.048	<0.025	<0.025	<0.025	<0.025	<0.025	0.2	10	20	80
Zn, Zinc	<0.025	10	<0.025	<0.025	<0.025	0.041	0.033	<0.025	<0.025	5.0	250	500	2000
Inorganic Anions	mg/ℓ												
Total Dissolved Solids	225*	2408	4342	2430	414	1501*	1118	902	574*	1000	12 500	25 000	100 000
Chloride as Cl	2	<2	125	55	14	14	36	4	5	300	15 000	30 000	120 000
Sulphate as SO4	47	1411	2667	1389	133	897	460	365	262	250	12 500	25 000	100 000
Nitrate as N	0.2	2.2	<0.1	0.3	0.3	2.3	0.1	0.1	0.4	11	550	1100	4400
Fluoride as F	3.3	4.0	4.2	1.0	3.2	2.1	4.9	5.0	2.4	1.5	75	150	600
Fluoride as F	3.3	4.0	4.2	1.0	3.2	2.1	4.9	5.0	2.4	1.5	75	150	

[o] = Outsourced [*] = Taken from Electrical Conductivity

S. Laubscher_____ Assistant Geochemistry Project Manager

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES X-RAY DIFFRACTION

Date received: 2020-06-11 Project number: 1000

Report number: 92197

Date completed: 2020-07-02 Order number: Delh.2020.001-17(v2) -Middelburg Ferrochrome

Client name: Delta H Address: PO Box 11465, Silver Lakes, 0054 Contact person: Dr Martin Holland Contact person: T. Rossouw Email: martin@delta-h.co.za Email: theo@delta-h.co.za Cell: 082 497 9088 Cell: 072 365 4613

	Composition (%) [o]										
MF1	0-1m	MF1	1-2m	MF2	0.5-1m						
96	716	96	5717	96	718						
Mineral	Amount (weight %)	Mineral	Amount (weight %)	Mineral	Amount (weight %)						
Quartz	5	Quartz	3.46	Quartz	2.21						
Mullite	1.06	Mullite	7.74	Mullite	4.4						
Bassanite	0.06	Bassanite	1.27	Bassanite	0.57						
Magnetite	0.03	Magnetite	1.02	Magnetite	0.01						
Iron	0.05	Iron	0	Iron	0.99						
Chromite	2.25	Chromite	4.77	Chromite	9.18						
Calcite	0.64	Calcite	2.15	Calcite	0.95						
Amorphous	90.9	Amorphous	79.58	Amorphous	81.7						

	Composition (%) [o]										
MF2 2	2-2.5m	MF2	2 3-4m	MF3 0.5-1.5m							
96	719	96	6720	96	5721						
Mineral	Amount (weight %)	Mineral	Amount (weight %)	Mineral	Amount (weight %)						
Quartz	3.07	Quartz	42.71	Quartz	2.58						
Mullite	0	Dolomite	0.86	Mullite	0						
Bassanite	2.17	Hematite	1.46	Bassanite	0.37						
Magnetite	0.04	Kaolinite	5.34	Magnetite	0						
Iron	0.01	Plagioclase	0.83	Iron	0.68						
Chromite	2.1	Amorphous	48.8	Chromite	13.64						
Calcite	0.51			Calcite	0.55						
Amorphous	92.09			Amorphous	82.18						

S. Laubscher

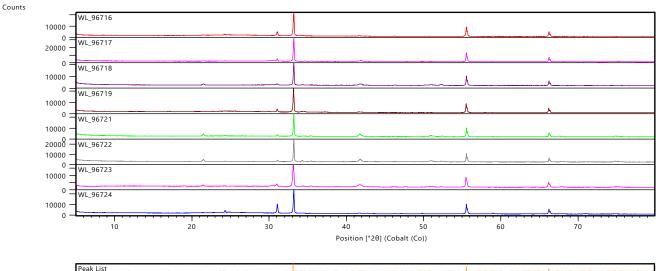
The information contained in this report is relevant only to the sample/samples supplied to WATERLAB (Pty) Ltd. Any further use of the above information is not the responsibility or liability of WATERLAB (Pty) Ltd. Except for the full report, parts of this report may not be reproduced without written approval of WATERLAB (Pty) Ltd.

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020

Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES X-RAY DIFFRACTION

Date received: 2020-06-11 Project number: 1000


Report number: 92197

Date completed: 2020-07-02 Order number: Delh.2020.001-17(v2) -Middelburg Ferrochrome

Client name: Delta H Address: PO Box 11465, Silver Lakes, 0054 Contact person: Dr Martin Holland Contact person: T. Rossouw Email: martin@delta-h.co.za Email: theo@delta-h.co.za Cell: 082 497 9088 Cell: 072 365 4613

	Composition (%) [o]									
MF4).5-1.5m	MF5 ().2-0.8m	MF5	1-2m					
90	6722	90	6723	96	724					
Mineral	Amount (weight %)	Mineral	Amount (weight %)	Minorol						
Quartz	2.09	Quartz	3.15	Quartz	10.94					
Mullite	0.06	Mullite	8.65	Mullite	1.21					
Bassanite	0.18	Bassanite	0.05	Bassanite	0.16					
Magnetite	0	Magnetite	0.36	Magnetite	0.04					
Iron	0.82	Iron	0.14	Iron	0.04					
Chromite	14.6	Chromite	8.68	Chromite	1.81					
Calcite	2.27	Calcite	e 0.62 Calcite							
Amorphous	79.96	Amorphous	78.35	Amorphous	85.28					

[o] = Outsourced

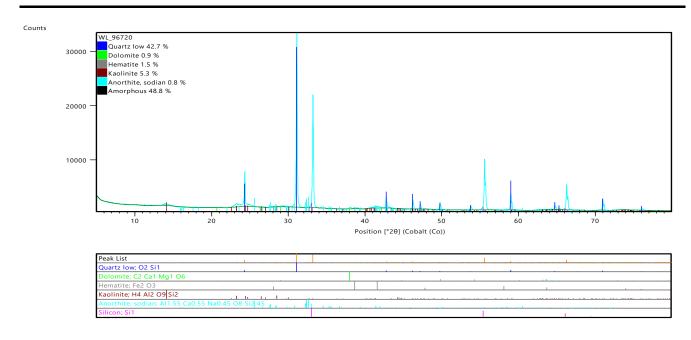
Peak List			 	
Quartz low; O2 Si1			 	
Mullite: Al4.08 Cr0.48 O9.87 Si1 44		in a la n	 	
Bassanite; H1 Ca1 O4.5 S1	and a known of		 	
Magnetite; Fe3 O4				1
Silicon; Si1			1	
Iron; Fe				
Chromite; Al0.56 Cr1.44 Fe0.52 Mg0.48 O4			 	1
Calcite; C1 Ca1 O3			 	

S. Laubscher

Assistant Geochemistry Project manager

The information contained in this report is relevant only to the sample/samples supplied to WATERLAB (Pty) Ltd. Any further use of the above information is not the responsibility or liability of WATERLAB (Pty) Ltd. Except for the full report, parts of this report may not be reproduced without written approval of WATERLAB (Pty) Ltd.

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za


CERTIFICATE OF ANALYSES X-RAY DIFFRACTION

Date received: 2020-06-11 Project number: 1000

Report number: 92197

Date completed: 2020-07-02 Order number: Delh.2020.001-17(v2) -Middelburg Ferrochrome

Client name: Delta H Address: PO Box 11465, Silver Lakes, 0054 Contact person: Dr Martin Holland Contact person: T. Rossouw Email: martin@delta-h.co.za Email: theo@delta-h.co.za Cell: 082 497 9088 Cell: 072 365 4613

Note:

The material was scanned after addition of 20 % Si for quantitative determination of amorphous content and micronizing using a McCrone micronizing mill. The material was prepared for XRD analysis using a back loading preparation method. Diffractograms were obtained using a Malvern Panalytical Aeris diffractometer with PIXcel detector and fixed slits with Fe filtered Co-Kα radiation. The phases were identified using X'Pert Highscore plus software. The relative phase amounts (weight %) were estimated by the Rietveld method.

Comment:

- In case the results do not correspond to results of other analytical techniques, please let me know for further fine tuning of XRD results.
- Mineral names may not reflect the actual compositions of minerals identified, but rather the mineral group.
- Due to preferred orientation and crystallite size effects, results may not be as accurate as shown.
- Traces of additional phases may be present.
- Determination of amorphous content can carry an error of +- 15 weight per cent.
- The amorphous component may represent organic carbon or a glassy phase forming part of a slag.

S. Laubscher

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES X-RAY DIFFRACTION

Date received: 2020-06-11 Project number: 1000

Report number: 92197

Date completed: 2020-07-02 Order number: Delh.2020.001-17(v2) -Middelburg Ferrochrome

Client name: Delta H Address: PO Box 11465, Silver Lakes, 0054 Contact person: Dr Martin Holland Contact person: T. Rossouw Email: martin@delta-h.co.za Email: theo@delta-h.co.za Cell: 082 497 9088 Cell: 072 365 4613

Ideal Mineral compositions:

Compound Name	Chemical Formula
Quartz	SiO2
Kaolinite	Al2 Si2 O5 (OH)4
Mullite	3Al2O3 2SiO2
Plagioclase	(Na,Ca)(Si,Al)4O8
Bassanite	2(Ca)2(SO ₄)•(H ₂ O)
Calcite	CaCO3
Dolomite	Ca Mg (C O3)2
Hematite	Fe2O3
Chromite	Fe++Cr2O4
Iron	Fe
Magnetite	Fe3O4

S. Laubscher

The information contained in this report is relevant only to the sample/samples supplied to WATERLAB (Pty) Ltd. Any further use of the above information is not the responsibility or liability of WATERLAB (Pty) Ltd. Except for the full report, parts of this report may not be reproduced without written approval of WATERLAB (Pty) Ltd.

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020

Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES

SULPHUR SPECIATION

Methods from: Prediction Manual For Drainage Chemistry from Sulphidic Geological Materials MEND Report 1.20.1

Date received: 2020-06-11 Project number: 1000

Report number: 92197

Date completed: 2020-07-07 Order number: Delh.2020.001-17(v2) -Middelburg Ferrochrome

Client name: Delta H Address: PO Box 11465, Silver Lakes, 0054 Contact person: Dr Martin Holland Contact person: T. Rossouw Email: martin@delta-h.co.za Email: theo@delta-h.co.za Cell: 082 497 9088 Cell: 072 365 4613

		Sample Identification							
Sulphur Speciation*	MF1 0-1m	MF1 1-2m	MF2 0.5-1m	MF2 2-2.5m	MF2 3-4m				
Sample Number	96716	96717	96718	96719	96720				
Total Sulphur (%) (ELTRA)	0.04	0.84	1.65	0.97	0.05				
Sulphate Sulphur as S (%)	0.04	0.63	1.57	0.89	0.04				
Sulphide Sulphur (%)	<0.01	0.22	0.08	0.08	0.01				

		Sample Identification							
Sulphur Speciation*	MF3 0.5-1.5m	MF4 0.5-1.5m	MF5 0.2-0.8m	MF5 1-2m	MF5 1-2m				
Sample Number	96721	96722	96723	96724	96724 D				
Total Sulphur (%) (ELTRA)	0.63	1.18	0.80	0.12	0.12				
Sulphate Sulphur as S (%)	0.58	1.15	0.74	0.11	0.10				
Sulphide Sulphur (%)	0.05	0.03	0.07	0.01	0.02				

Notes:

- Samples analysed with Pyrolysis at 550°C as per Prediction Manual For Drainage Chemistry from Sulphidic Geological Materials MEND Report 1.20.1. Multiply Sulphate Sulphur to calculate SO4 % by 2.996. Please see the method for interferences.
- Organic Sulphur is not taken into account and may be included in the results.
- Please let me know if results do not correspond to other data.

S. Laubscher

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES Organic / Inorganic Carbon

Date received: 2020-06-11 Project number: 1000

Report number: 92197

Date completed: 2020-07-02 Order number: Delh.2020.001-17(v2) -Middelburg Ferrochrome

Client name: Delta H Address: PO Box 11465, Silver Lakes, 0054 Contact person: Dr Martin Holland Contact person: T. Rossouw Email: martin@delta-h.co.za Email: theo@delta-h.co.za Cell: 082 497 9088 Cell: 072 365 4613

	Sample Identification				
Analysis	MF1 0-1m	MF2 3-4m			
Sample Number	96716	96717	96718	96719	96720
Total Carbon (%) (LECO)[o]	1.59	49.2	25.9	2.46	0.67
Organic Carbon (%) (LECO) [o]	1.40	47.8	24.6	2.19	0.44
Inorganic Carbon (%) (LECO) [o]	0.19	1.40	1.30	0.27	0.23

	Sample Identification					
Analysis	MF3 0.5-1.5m	MF5 1-2m				
Sample Number	96721	96722	96723	96724		
Total Carbon (%) (LECO)[o]	1.96	4.06	18.4	1.17		
Organic Carbon (%) (LECO) [o]	1.86	3.25	18.4	0.92		
Inorganic Carbon (%) (LECO) [o]	0.10	0.81	0	0.25		

[o] = Outsourced

S. Laubscher

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES ACID – BASE ACCOUNTING EPA-600 MODIFIED SOBEK METHOD

Date received: 2020-06-11 Project number: 1000

Report number: 92197

Date completed: 2020-07-07 Order number: Delh.2020.001-17(v2) -Middelburg Ferrochrome

Client name: Delta H Address: PO Box 11465, Silver Lakes, 0054 Contact person: Dr Martin Holland Contact person: T. Rossouw Email: martin@delta-h.co.za Email: theo@delta-h.co.za Cell: 082 497 9088 / 072 365 4613

Acid – Base Accounting	Sample Identification						
Modified Sobek (EPA-600)	MF1 0-1m	MF1 1-2m	MF2 0.5-1m	MF2 2-2.5m	MF2 3-4m		
Sample Number	96716	96717	96718	96719	96720		
Paste pH	8.3	5.8	9.7	8.9	7.4		
Total Sulphur (%) (LECO)	0.04	0.84	1.65	0.97	0.05		
Acid Potential (AP) (kg/t)	1.27	26	52	30	1.53		
Neutralization Potential (NP)	27	5.20	162	44	12		
Nett Neutralization Potential (NNP)	25	-21	111	14	10		
Neutralising Potential Ratio (NPR) (NP : AP)	21	0.198	3.15	1.46	7.75		
Rock Type	Ш	I	II	II	Ш		

Acid – Base Accounting	Sample Identification						
Modified Sobek (EPA-600)	MF3 0.5-1.5m	MF4 0.5-1.5m	MF5 0.2-0.8m	MF5 1-2m	MF5 1-2m		
Sample Number	96721	96722	96723	96724	96724 D		
Paste pH	8.6	9.3	8.9	8.6	8.6		
Total Sulphur (%) (LECO)	0.63	1.18	0.80	0.12	0.12		
Acid Potential (AP) (kg/t)	20	37	25	3.64	3.74		
Neutralization Potential (NP)	51	102	119	31	31		
Nett Neutralization Potential (NNP)	31	65	94	27	27		
Neutralising Potential Ratio (NPR) (NP : AP)	2.57	2.76	4.72	8.44	8.28		
Rock Type	II	II	II	=	III		

* Negative NP values are obtained when the volume of NaOH (0.1N) titrated (pH: 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 – 2.5 Any negative NP values are corrected to 0.00. Please refer to Appendix (p.2) for a Terminology of terms and guidelines for rock classification

S. Laubscher_

The information contained in this report is relevant only to the sample/samples supplied to WATERLAB (Pty) Ltd. Any further use of the above information is not the responsibility or liability of WATERLAB (Pty) Ltd. Except for the full report, parts of this report may not be reproduced without written approval of WATERLAB (Pty) Ltd.

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES ACID – BASE ACCOUNTING EPA-600 MODIFIED SOBEK METHOD

Date received: 2020-06-11 Project number: 1000

Report number: 92197

Date completed: 2020-07-07 Order number: Delh.2020.001-17(v2) -Middelburg Ferrochrome

Client name: Delta H Address: PO Box 11465, Silver Lakes, 0054 Contact person: Dr Martin Holland Contact person: T. Rossouw Email: martin@delta-h.co.za Email: theo@delta-h.co.za Cell: 082 497 9088 / 072 365 4613

APPENDIX: TERMINOLOGY AND ROCK CLASSIFICATION

TERMINOLOGY (SYNONYMS)

- Acid Potential (AP) ; Synonyms: Maximum Potential Acidity (MPA)
 Method: Total S(%) (Leco Analyzer) x 31.25
- Neutralization Potential (NP); Synonyms: Gross Neutralization Potential (GNP); Syn: Acid Neutralization Capacity (ANC) (The capacity of a sample to consume acid) Method: Fizz Test; Acid-Base Titration (Sobek & Modified Sobek (Lawrence) Methods)
- Nett Neutralization Potential (NNP); Synonyms: Nett Acid Production Potential (NAPP) Calculation: NNP = NP – AP ; NAPP = ANC – MPA
- Neutralising Potential Ratio (NPR) Calculation: NPR = NP : AP

CLASSIFICATION ACCORDING TO NETT NEUTRALISING POTENTIAL (NNP)

If NNP (NP – AP) < 0, the sample has the potential to generate acid If NNP (NP – AP) > 0, the sample has the potential to neutralise acid produced

Any sample with NNP < 20 is potentiall acid-generating, and any sample with NNP > -20 might not generate acid (Usher *et al.*, 2003)

ROCK CLASSIFICATION

ΤΥΡΕ Ι	Potentially Acid Forming	Total S(%) > 0.25% and NP:AP ratio 1:1 or less
ΤΥΡΕ ΙΙ	Intermediate	Total S(%) > 0.25% and NP:AP ratio 1:3 or less
TYPE III	Non-Acid Forming	Total S(%) < 0.25% and NP:AP ratio 1:3 or greater

S. Laubscher_

The information contained in this report is relevant only to the sample/samples supplied to WATERLAB (Pty) Ltd. Any further use of the above information is not the responsibility or liability of WATERLAB (Pty) Ltd. Except for the full report, parts of this report may not be reproduced without written approval of WATERLAB (Pty) Ltd.

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES ACID – BASE ACCOUNTING EPA-600 MODIFIED SOBEK METHOD

Date received: 2020-06-11 Project number: 1000

Report number: 92197

Date completed: 2020-07-07 Order number: Delh.2020.001-17(v2) -Middelburg Ferrochrome

Client name: Delta H Address: PO Box 11465, Silver Lakes, 0054 Contact person: Dr Martin Holland Contact person: T. Rossouw Email: martin@delta-h.co.za Email: theo@delta-h.co.za Cell: 082 497 9088 / 072 365 4613

CLASSIFICATION ACCORDING TO NEUTRALISING POTENTIAL RATIO (NPR)

Guidelines for screening criteria based on ABA (Price et al., 1997; Usher et al., 2003)

Potential for ARD	Initial NPR Screening Criteria	Comments
Likely	< 1:1	Likely AMD generating
Possibly	1:1 – 2:1	Possibly AMD generating if NP is insufficiently reactive or is depleted at a faster rate than sulphides
Low	2:1 – 4:1	Not potentially AMD generating unless significant preferential exposure of sulphides along fracture planes, or extremely reactive sulphides in combination with insufficiently reactive NP
None	>4:1	No further AMD testing required unless materials are to be used as a source of alkalinity

CLASSIFICATION ACCORDING TO SULPHUR CONTENT (%S) AND NEUTRALISING POTENTIAL RATIO (NPR)

For sustainable long-term acid generation, at least 0.3% Sulphide-S is needed. Values below this can yield acidity but it is likely to be only of short-term significance. From these facts, and using the NPR values, a number of rules can be derived:

- 1) Samples with less than 0.3% Sulphide-S are regarded as having insufficient oxidisable Sulphide-S to sustain acid generation.
- 2) NPR ratios of >4:1 are considered to have enough neutralising capacity.
- 3) NPR ratios of 3:1 to 1:1 are consider inconclusive.
- 4) NPR ratios below 1:1 with Sulphide-S above 3% are potentially acid-generating. (Soregaroli & Lawrence, 1998 ; Usher *et al.*, 2003)

S. Laubscher

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES ACID – BASE ACCOUNTING EPA-600 MODIFIED SOBEK METHOD

Date received: 2020-06-11 Project number: 1000

Report number: 92197

Date completed: 2020-07-07 Order number: Delh.2020.001-17(v2) -Middelburg Ferrochrome

Client name: Delta H Address: PO Box 11465, Silver Lakes, 0054 Contact person: Dr Martin Holland Contact person: T. Rossouw Email: martin@delta-h.co.za Email: theo@delta-h.co.za Cell: 082 497 9088 / 072 365 4613

REFERENCES

LAWRENCE, R.W & WANG, Y. 1997. Determination of Neutralization Potential in the Prediction of Acid Rock Drainage. Proc. 4th International Conference on Acid Rock Drainage. Vancouver. BC. pp. 449 – 464.

PRICE, W.A., MORIN, K. & HUTT, N. 1997. Guidelines for the prediction of Acid Rock Drainage and Metal leaching for mines in British Columbia: Part 11. Recommended procedures for static and kinetic testing. In: Proceedings of the Fourth International Conference on Acid Rock Drainage. Vol 1. May 31 – June 6. Vancouver, BC., pp. 15 – 30.

SOBEK, A.A., SCHULLER, W.A., FREEMAN, J.R. & SMITH, R.M. 1978. Field and laboratory methods applicable to overburdens and minesoils. EPA-600/2-78-054. USEPA. Cincinnati. Ohio.

SOREGAROLI, B.A. & LAWRENCE, R.W. 1998. Update on waste Characterisation Studies. Proc. Mine Design, Operations and Closure Conference. Polson, Montana.

USHER, B.H., CRUYWAGEN, L-M., DE NECKER, E. & HODGSON, F.D.I. 2003. Acid-Base : Accounting, Techniques and Evaluation (ABATE): Recommended Methods for Conducting and Interpreting Analytical Geochemical Assessments at Opencast Collieries in South Africa. Water Research Commission Report No 1055/2/03. Pretoria.

ENVIRONMENT AUSTRALIA. 1997. Managing Sulphidic Mine Wastes and Acid Drainage.

S. Laubscher

The information contained in this report is relevant only to the sample/samples supplied to WATERLAB (Pty) Ltd. Any further use of the above information is not the responsibility or liability of WATERLAB (Pty) Ltd. Except for the full report, parts of this report may not be reproduced without written approval of WATERLAB (Pty) Ltd.

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 – 349 – 1066 Facsimile: +2712 – 349 – 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES NET ACID GENERATION

Date received: 2020-06-11 Project number: 1000

Report number: 92197

Date completed: 2020-07-02 Order number: Delh.2020.001-17(v2) -Middelburg Ferrochrome

Client name: Delta H Address: PO Box 11465, Silver Lakes, 0054 Contact person: Dr Martin Holland Contact person: T. Rossouw Email: martin@delta-h.co.za Email: theo@delta-h.co.za Cell: 082 497 9088 Cell: 072 365 4613

	Sample Identification: pH 4.5				
Net Acid Generation	MF1 MF1 MF2 MF2 0-1m 1-2m 0.5-1m 2-2.5m				MF2 3-4m
Sample Number	96716	96717	96718	96719	96720
NAG pH: (H ₂ O ₂)	8.2	4.1	8.7	8.6	7.1
NAG (kg H₂SO₄ / t)	<0.01	0.59	<0.01	<0.01	<0.01

	Sample Identification: pH 4.5				
Net Acid Generation	MF3 MF4 MF5 MF5 0.5-1.5m 0.5-1.5m 0.2-0.8m 1-2m				MF5 1-2m
Sample Number	96721	96722	96723	96724	96724 D
NAG pH: (H ₂ O ₂)	8.2	8.6	8.3	8.1	8.2
NAG (kg H ₂ SO ₄ / t)	<0.01	<0.01	<0.01	<0.01	<0.01

S. Laubscher

The information contained in this report is relevant only to the sample/samples supplied to WATERLAB (Pty) Ltd. Any further use of the above information is not the responsibility or liability of WATERLAB (Pty) Ltd. Except for the full report, parts of this report may not be reproduced without written approval of WATERLAB (Pty) Ltd.

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES NET ACID GENERATION

Date received: 2020-06-11 Project number: 1000

Report number: 92197

Date completed: 2020-07-02 Order number: Delh.2020.001-17(v2) -Middelburg Ferrochrome

Client name: Delta H Address: PO Box 11465, Silver Lakes, 0054 Contact person: Dr Martin Holland Contact person: T. Rossouw Email: martin@delta-h.co.za Email: theo@delta-h.co.za Cell: 082 497 9088 Cell: 072 365 4613

	Sample Identification: pH 7				
Net Acid Generation					MF2 3-4m
Sample Number	96716	96717	96718	96719	96720
NAG pH: (H ₂ O ₂)	8.2	4.5	8.7	8.6	7.1
NAG (kg H₂SO₄ / t)	<0.01	18.62	<0.01	<0.01	<0.01

		Sample Identification: pH 7				
Net Acid Generation	MF3 MF4 MF5 MF5 0.5-1.5m 0.5-1.5m 0.2-0.8m 1-2m 7					
Sample Number	96721	96722	96723	96724	96724 D	
NAG pH: (H ₂ O ₂)	8.2	8.6	8.3	8.1	8.2	
NAG (kg H₂SO₄ / t)	<0.01	<0.01	<0.01	<0.01	<0.01	

Notes:

 Samples analysed with Single Addition NAG test as per Prediction Manual For Drainage Chemistry from Sulphidic Geological Materials MEND Report 1.20.1.

· Please let me know if results do not correspond to other data.

S. Laubscher

The information contained in this report is relevant only to the sample/samples supplied to WATERLAB (Pty) Ltd. Any further use of the above information is not the responsibility or liability of WATERLAB (Pty) Ltd. Except for the full report, parts of this report may not be reproduced without written approval of WATERLAB (Pty) Ltd.

Appendix D (Interwaste SANS 10234 Classification Report)

- Samancor Middelburg Ferrochrome-Review of Chrome Direct Reduction Slimes Waste Classification Report
- SANS 10234 Safety data sheet (SDS) for CDR slimes stockpile (Interwaste, 2020)

SAMANCOR CHROME

Samancor Chrome, Chrome Direct Reduction Slimes Stockpile -SANS 10234 Classification Report

Prepared on behalf of:

Samancor Chrome Middelburg South Africa

Email: Corne.pretorius@samancorcr.com

Prepared by:

Interwaste (PTY) Ltd. PO Box 382 Germiston 1800

Tel: +27 (0)11 323 7300 Email: info@interwaste.co.za

Inter-Waste (Pty) Ltd. (Co. Reg. No. 1988/003851/07) Ita Intervaste. Directors: WAH Willcocks R Pillay LC Grobbelaar DL Nicono AP Broodryk JJ McNell Company Secretary: AS de Villers

TABLE OF CONTENTS:

Executive Summary:	ii
DEFINITIONS:	iv
ABBREVIATIONS:	vi
1. Background and Introduction	7
1.1 Waste Generation Process Overview	7
1.2 Overview of SANS 10234, GHS	7
2. Sampling and Analysis	9
2.1 Results and DISCUSSION	.10
3. SANS 10234 Classification – 'Ingredient' Hazard Data	.15
4. Discussion	.24
Annexure A: GHS Classification Criteria	.25
Skin Corrosion/irritation	.25
Serious Eye Damage/Eye Irritation	.25
Carcinogenicity	.26
Reproductive Toxicity—Fertility	.26
Germ Cell Mutagenicity	.26
Specific Target Organ Toxicity (STOT)—Single Exposure	.27
Specific Target Organ Toxicity (STOT)—Repeated Exposure	.27
Hazards to the Aquatic Environment	.27
Annexure B: Laboratory Results	.28
Annexure C: Generator sans 10234 Safety Data Sheet (SDS) for Chrome direct reductic	n
slimes stockpile	.29

LIST OF TABLES:

Table 1: SANS 10234 Cut-off values/concentration limits for hazard classes10
Table 2: Chrome Direct Reduction Slimes Stockpile ingredients ≥0.1% by mass – Relevant
ingredient determination11
Table 3: Chrome Direct Reduction Slimes Stockpile – Relevant ingredient hazard data12
Table 4: Chrome Direct Reduction Slimes Stockpile – Relevant ingredient hazard
datacontinued13
Table 5: Chrome Direct Reduction Slimes Stockpile – Relevant ingredient hazard
datacontinued14

EXECUTIVE SUMMARY:

Summary of SANS 102	34 Classification – Chrome Direct Reduction Slimes Stockpile
Hazard Classes & Categories Hazard Classes & Categories	Skin Irritation – Category 2 Eye Irritation – Category 2A Carcinogenicity – Category 1B Specific Target Organ Toxicity – Single Exposure – Category 3 Specific Target Organ Toxicity – Repeated Exposure – Category 1
GHS Pictogram	
Signal Word	Danger
Hazard Statements	 H315: Causes skin irritation H319: Causes severe eye irritation H335: May cause respiratory irritation H350: May cause cancer H372: Causes damage to organs through prolonged or repeated exposure

Waste Profile and classification						
ltem	Description	Classified Included	/			
General Waste	A waste that does not pose an immediate hazard or threat to health or to the environment, and includes domestic, building and demolition waste, business waste and inert waste.	x				
Hazardous Waste	Means any waste that contains organic or inorganic elements or compounds that may, owing to the inherent physical, chemical or toxicological characteristics of that waste, have a detrimental impact on health and the environment.	~				
Safety Data Sheet	Preparation of a Safety Data Sheet (SDS). A SDS is required for all hazardous wastes (excluding Health Care Risk Waste (HCRW) in terms of Regulation 5(1) of GN. R. 634 of 2013.	√				

SANS 10234	Classification as hazardous or non-hazardous	✓
Classification	in accordance with SANS 10234 (Regulation	
	4(2) of GN 634 of 2013). This is not a	
	requirement where a waste can	
	categorically be defined under Annexure 1	
	to GN. R. 634 of 2013.	

DISCLAIMER: The information in this Waste Classification Report and associated Safety Data Sheet (SDS), where relevant, has been developed on the basis of the information available to Interwaste at the time of submission, and provides Interwaste's best reasonable and professional assessment of the intrinsic hazards posed by the subject waste streams. INTERWASTE MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR COURSE OF MANAGEMENT OR USAGE OF TRADE. It remains the waste generator's responsibility for determining whether their waste is fit for a particular purpose and suitable for user's/waste manager's method of use, management or application. Given the variety of factors that can affect the management, transport, storage and handling of the waste, some of which are uniquely within the generator's knowledge and control, it is essential that the generator evaluate the subject Report and SDS to determine whether they are fit for the particular purpose and suitable for third party user's / manager's method of use or application. Interwaste cannot be held liable for changes in the waste's constituents caused by a change in process, or raw material input into the process. The make up of waste is, by its very nature, variable. The manner in which the waste is to be handled may vary depending on its constituents.

DEFINITIONS:

Dermal corrosion:	See skin corrosion.
Dermal irritation:	See skin irritation.
Eye irritation:	The production of changes in the eye following the application of test substance to the anterior surface of the eye, which are fully reversible within 21 days of application.
Flash point:	The lowest temperature (corrected to a standard pressure of 101.3 kPa) at which the application of an ignition source causes the vapours of a liquid to ignite under specified test conditions.
Hazard statement:	A statement assigned to a hazard class and category that describes the nature of the hazards of a hazardous product, including, where appropriate, the degree of hazard.
Hazard category:	The division of criteria within each hazard class, e.g. oral acute toxicity includes five hazard categories and flammable liquids includes four hazard categories. These categories compare hazard severity within a hazard class and should not be taken as a comparison of hazard categories more generally; Hazard class means the nature of the physical, health or environmental hazard, e.g. flammable solid, carcinogen, oral acute toxicity.
Label means:	An appropriate group of written, printed or graphic information elements concerning a hazardous product, selected as relevant to the target sector(s) that is affixed to, printed on, or attached to the immediate container of a hazardous product, or to the outside packaging of a hazardous product.
Mixture:	A mixture or a solution composed of two or more substances in which they do not react.
Mutagen:	An agent giving rise to an increased occurrence of mutations in populations of cells and /or organisms.
Pictogram:	A graphical composition that may include a symbol plus other graphic elements, such as a border, background pattern or colour that is intended to convey specific information.
Precautionary State	ments: phrase or pictogram (or both) that describes recommended measures that should be taken into account to minimize or prevent adverse effects resulting from exposure to a hazardous product, or improper storage or handling of a hazardous product.
Regulations:	The Waste Classification and Management Regulations under the NEM:WA.
Serious eye damag	e: The production of tissue damage in the eye, or serious physical decay of vision, following application of a test substance to the

anterior surface of the eye, which is not fully reversible within 21 days of application.

- Signal word: A word used to indicate the relative level of severity of hazard and alert the reader to a potential hazard on the label. The GHS uses "Danger" and "Warning" as signal words.
- **Skin corrosion:** The production of irreversible damage to the skin following the application of a test substance for up to 4 hours.
- **Skin irritation:** The production of reversible damage to the skin following the application of a test substance for up to 4 hours.
- Substance: Chemical elements and their compounds in the natural state or obtained by any production process, including any additive necessary to preserve the stability of the product and any impurities deriving from the process used, but excluding any solvent which may be separated without affecting the stability of the substance or changing its composition.
- **Symbol:** A graphical element intended to succinctly convey information.

ABBREVIATIONS:

CDC:	Centres for Disease Control & Prevention
DEA:	Department of Environmental Affairs
GHS:	Globally Harmonized System of Classification and Labelling of Chemicals.
IARC:	International Agency for Research on Cancer
MSDS:	Material Safety Data Sheet
NEM:WA:	National Environmental Management: Waste Act, 2008 (Act No. 59 of 2008)[NEM:WA]
NEM:WAA:	National Environmental Management: Waste Amendment Act, 2014 (Act No. 26 of 2014)[NEM:WAA]
SANS:	South African National Standard
SDS:	Safety Data Sheet
STOT:	Specific Target Organ Toxicity
USEPA:	United States Environmental Protection Agency

1. BACKGROUND AND INTRODUCTION

Samancor Chrome, commissioned Interwaste (Pty) Ltd. (hereinafter referred to as 'Interwaste') to classify their Chrome Direct Reduction Slimes Stockpile, in terms of SANS 10234 (Globally Harmonised System of Classification and Labelling of Chemicals, GHS). The above mentioned material falls within the ambit of the definition of 'waste' provided for in the National Environmental Management: Waste Amendment Act, 2014 (Act 26 of 2014)[NEM:WAA], and thus need to be managed in accordance with the relevant provisions of the Act, as well as any relevant Regulations promulgated thereunder.

Interwaste has adopted a hierarchical approach toward classifying the subject waste stream. The approach is intended to inform the classification of the subject waste stream according to SANS 10234 in an efficient, cost effective and orderly manner, without compromising on the quality of the classification or the need to adhere to applicable legal requirements. Key to this approach is to use available laboratory analysis on the subject waste stream in conjunction with existing hazard information on the waste as a whole, or key ingredients/components thereof, thereby avoiding the need for potentially costly 'duplicate' testing and the unnecessary use of test animals.

Regulation 4 (2) of the Department of Environmental Affairs' (DEA) Waste Classification and Management Regulations (GN. R. 634 of 23 August 2013), hereinafter referred to as 'the Regulations', have been used as the legal trigger toward the requisite classification of this waste stream. Accordingly, in terms of Regulation 4 (2), Interwaste has classified the waste according to the relevant provisions of SANS 10234 (Globally Harmonised System of Classification and Labelling of Chemicals, GHS).

1.1 WASTE GENERATION PROCESS OVERVIEW

The subject waste stream is generated as a by-product during the production of low carbon ferrochrome, whereby chrome ore is brought into contact with finely divided coal at high temperature. The resultant slimes are the dust produced in this process which is captured via water sprays, and stored in the slimes dam.

1.2 OVERVIEW OF SANS 10234, GHS

The SANS 10234, GHS, standard covers the harmonized criteria for the classification of hazardous substances and mixtures, including waste, for their safe transport, storage and handling, according to their intrinsic health, environmental and physical hazards. It gives the harmonized communication elements for labelling and Safety Data Sheets (SDS). The standard accordingly provides detail on classification criteria (including tests methods,

for physical hazard classes, often with reference to SANS 10228), labelling, hazard identification symbols (pictograms), packaging and the minimum information required for a Safety Data Sheet (SDS).

The promulgation of the National Waste Classification and Management Regulations under the National Environmental Management: Waste Act, 2008 (Act 59 of 2008)[NEM:WA] has significantly altered the regulatory environment in South Africa in respect of the classification of waste; where until now the comprehensive classification of waste has not been a clear legal requirement.

Importantly, the classification of a waste has little bearing on the disposal or management requirements thereof, but is used primarily to inform

- i) appropriate handling and storage of hazardous waste, as well as
- ii) the development of an associated Safety Data Sheet (SDS) for the waste in terms of SANS10234, as is required in terms of Regulation 5 (1).

The classification of the waste, in terms of SANS 10234, does not necessarily inform the disposal requirements thereof, but may be used to a degree to inform the potential applicability of landfill restrictions imposed under section 5 (1) of the Standard for the Disposal of Waste to Landfill, GN. R. 635 of 23 August 2013.

2. SAMPLING AND ANALYSIS

Sampler	Date	Meth	od					
Interwaste	12/06/2020	9 sa	9 samples of the CDR Slimes Stockpile was					
Representative		delivered to the Interwaste's Waste Analytical						
			atory in Germ	iston, for subseq	uent analysis.			
Laboratory Analysis—Elemental (XRF)								
Compositional charc	acterisation		Laboratory	Total	Leachable			
				Concentration	Concentration			
Metals and me GN. R. 635	etalloids, as liste	eain	Waterlab	\checkmark	\checkmark			
GN. K. 000			(Provided					
Other detector	able metals		by client):	~	N/A			
				·				
			Report					
			number:					
Inorganio gniona gal	listed in CND (25.	92197a Waterlab					
Inorganic anions, as I (CI, F, NO ₃ , SO ₄ , CN)	ISTED IN GIN.R. 6	35.	(Provided					
(01, 1, 1, 1003, 004, 010)			by client):					
			Report	\checkmark	Х			
			number:					
			92197a					
Organics, as lis	sted in GN.R. 63	35	Interwaste					
			Laboratory	\checkmark	N/A			
Other detector	able organic							
substances				\checkmark	N/A			
Laboratory Analysis -	- Crystalline ph	ases	Laboratory	Total Concentre	ation			
(XRD)								
	ntent (all detec	table	Waterlab Report	✓				
crystalline cor	crystalline compounds)			•				
Particle size distribution (PSD)			number: 92197					
			7217/	\checkmark				
Physical and chemical properties			Laboratory	Range				
• pH				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
 Elash point 			Interwaste		x			
Flash point			Laboratory	,				

N/A = not applicable

Raw data from the laboratory analysis are attached hereto in <u>Annexure B</u>

2.1 RESULTS AND DISCUSSION

All analytical results received were converted to a percentage by mass basis, in order to assess the contaminant concentrations against the prescribed cut-off values / concentration limits (Table 1 & Table 2) to be applied for human health and environmental hazard classes as per SANS 10234.

Table 1: SANS10234 Cu	t-off values/conce	entration limits for hazard classes				
Hazard Class		Cut-off Value (concentration limit); %				
Acute toxicity		≥ 1.0%				
Skin corrosion		≥ 1.0%				
Skin irritation		≥ 1.0%				
Serious eye damage		≥ 1.0%				
Eye irritation		≥ 1.0%				
Respiratory sensitisation		≥ 1.0%				
Skin sensitisation		≥ 1.0%				
Mutagenicity	Category 1	≥ 0.1%				
Moragemeny	Category 2	≥ 1.0%				
Carcinogenicity		≥ 0.1%				
Reproductive toxicity		≥ 0.1%				
Target organ systemic	Single exposure	≥ 1.0%				
toxicity	Repeat exposure	≥ 1.0%				
Hazardous to the aquatic environment		≥ 1.0%				

The application of the cut-off values, as per Table 1, shows thirteen (13) contaminants in the waste to be considered potentially relevant to the classification thereof in terms of SANS 10234; with reasons for 'relevance' indicated where applicable.

Table 2: Chrome Direct Reduction Slimes Stockpile ingredients ≥0.1% by mass – Relevant ingredient determination

	Relevantingredient determination							
Compound Form	Concentration (%)	Relevant to	Reason					
		classification						
Quartz (SiO ₂) ^A	2.09 - 42.71	\checkmark	>1.0%					
Mullite (3Al ₂ O ₃ 2SiO ₂) ^A	0.06 – 8.65	\checkmark	>1.0%					
Bassanite (2(Ca)2(SO4).(H2O)^	0.16 – 2.17	√	>1.0%					
Magnetite (Fe ₃ O ₄)^	0.36 – 1.02	✓	>0.1% but <1.0% and not C, M, or R*					
Iron (Fe) ^A	0.05 – 0.99	Х	>0.1% but <1.0% and not C, M, or R*					
Chromite (Fe ₂ CrO ₄) ^A	2.10 - 14.60	\checkmark	>1.0%					
Calcite (CaCO ₃) ^A	0.52 – 2.27	✓	>1.0%					
Dolomite (CaMg(CO ₃) ₂)^	0 – 0.86	Х	>0.1% but <1.0% and not C, M, or R*					
Hematite (Fe ₂ O ₃) ^A	0-1.46	✓	>1.0%					
Kaolinite (Al₂Si₂O₅(OH)₄)^	0 – 5.34	✓	>1.0%					
Plagioclase ((Na,Ca)(Si,Al)4O8) ^A	0 - 0.83	Х	>0.1% but <1.0% and not C, M, or R*					
Aluminium Oxide (Al ₂ O ₃) ^B	0 – 5.76	✓	>1.0%					
Silicon Dioxide (SiO ₂) ^B	8.61 – 31.59	\checkmark	>1.0%					
Phosphorous Pentoxide (P ₂ O ₅) ^B	0.16 – 0.49	Х	>0.1% but <1.0% and not C, M, or R*					
Calcium Carbonate (CaCO3) ^B	0 – 1.55	~	>1.0%					
Manganese Oxide (MnO2) ^B	0.14 – 0.82	Х	>0.1% but <1.0% and not C, M, or R*					
Iron Oxide (Fe ₂ O ₃) ^B	0.83 – 14.97	\checkmark	>1.0%					
Sodium Sulphate (NaSO4) ^B	0.49 – 6.92	~	>1.0%					

* C = Carcinogenic, M = Mutagenic or R = Reproductive Toxin (with cut-off values of 0.1% relevant to these hazard classes, as opposed to 1% for

all remaining human health and aquatic hazard classes)

^A Crystalline form as per XRD analysis.

^B Chemical form assumed based on literature, or associated elemental concentrations in the waste.

Table 3: Chrome Direct Re	eduction Slimes Stock	pile – Relevant i	ngredient hazara	data		
Ingredient		Quartz	Mullite	Bassanite	Magnetite	Chromite
Chemical composition by	yweight%	2.09 - 42.71	0.06 – 8.65	0.16 – 2.17	0.36 – 1.02	2.10 - 14.60
CAS Number		14808-60-7	1302-93-8	7778-18-9	1317-61-9	1308-31-2
Human health hazards						
	Oral					
Acute Toxicity	Inhalation					
	Dermal					
Skin corrosion / irritation						
Eye damage / irritation						
Mutagenicity						
Carcinogenicity		Category 1A				
Reproductive toxicity						
Specific Target Organ	Single Exposure	Category 3 (Resp)*				
Toxicity (STOT)	Repeat Exposure	Category 1				
Aspiration Hazard						
Skin/respiratory sensitisation						
Aquatic hazards		· ·				
Acute						
Chronic						

Table 4: Chrome Direct R	eduction Slimes Stock	pile – Relevant i	ingredient hazard	datacontin	Jed	
Ingredient		Calcite	Hematite	Kaolinite	Aluminium Oxide	Silicon Dioxide
Chemical composition by	yweight%	0.52 – 2.27	0-1.46	0 - 5.34	0 – 5.76	8.61 – 31.59
CAS Number		471-34-1	1317-60-8	7778-18-9	1317-61-9	14808-60-7
Human health hazards						
	Oral					
Acute Toxicity	Inhalation					
	Dermal					
Skin corrosion / irritation						
Eye damage / irritation						
Mutagenicity						
Carcinogenicity						
Reproductive toxicity						
Specific Target Organ	Single Exposure					
Toxicity (STOT)	Repeat Exposure					Category 1
Aspiration Hazard						
Skin/respiratory sensitisation						
Aquatic hazards		·				
Acute						
Chronic						

Table 5: Chrome Direct Reduction Slimes Stockpile – Relevant ingredient hazard datacontinued				
Ingredient		Calcium Carbonate	Iron Oxide	Sodium Sulphate
Chemical composition by	weight%	0 – 1.55	0.83 – 14.97	0.49 - 6.92
CAS Number		471-34-1	1309-37-1	7757-82-6
Human health hazards				
	Oral			
Acute Toxicity	Inhalation			
	Dermal			
Skin corrosion / irritation	·		Category 2	
Eye damage / irritation			Category 2	
Mutagenicity				
Carcinogenicity				
Reproductive toxicity				
Specific Target Organ	Single Exposure		Category 3 (Resp)*	
Toxicity (STOT)	Repeat Exposure			
Aspiration Hazard				
Skin/respiratory sensitisation				
Aquatic hazards				
Acute				
Chronic				

3. SANS 10234 CLASSIFICATION - 'INGREDIENT' HAZARD DATA

SANS 10234 makes a general allowance for the use of existing hazard data on classified 'ingredients' in a mixture toward the classification of that mixture. This is primarily aimed at avoiding unnecessary testing in the laboratory on the mixture (i.e. the waste in this instance) as a whole, particularly as it pertains to animal testing in respect of human health and environmental hazard groups. This process (in general terms) relies on knowing the intrinsic hazards or hazardous properties of the ingredients in a mixture, in combination with knowledge of the contribution thereof (by mass) to the overall mixture / waste.

The following phased approach was adopted by Interwaste toward classifying the subject waste stream, so that the outcomes are scientifically correct and the output thereof defensible:

- 1. Waste generator discussions and review of the process(es) generating the waste, as well as any existing/relevant SDS's;
- 2. Laboratory analysis, focused on relevant contaminants of concern;
- 3. Literature review / assimilation of hazard data and existing GHS classifications on the waste / mixture as a whole, or similar waste streams; where... "test data already generated for the classification of a chemical under existing systems shall be accepted when classifying a waste under the harmonised system, thereby avoiding duplicate testing and the unnecessary use of test animals" (SANS 10234);
- 4. A) Application of bridging principles prescribed under SANS 10234 towards hazard class classification, given the lack of availability of existing hazard information on similar waste streams (<u>Annexure A</u> has reference);

B) Application of additivity principles under the GHS where bridging principles inadequate towards hazard class classification; given that no hazard data is available on the waste/mixture as a whole, but where there is sufficient existing hazard data on the ingredients/constituents of the waste to allow for such.

To this end, the available knowledge on the ingredient composition for the subject waste stream has been used to source available hazard data for each of the relevant ingredients. The term 'relevant ingredients' is used to describe those ingredients in the waste that were measured at a concentration of >0.1% (by mass); where Table 2 refers.

SANS 10234 (GHS) Detailed Waste Classification

Waste appearance

Grey to black clay and slimes.

Classification Summary

Skin Irritation (Category 2), Eye Irritation (Category 2), Carcinogenicity (Category 1B), Specific Target Organ Toxicity – Single Exposure (Category 3), and Specific Target Organ Toxicity – Repeated Exposure (Category 1).

Assumptions and limitations

- The measured metal substances were assumed to be present in oxide form as found in literature for waste similar to the subject waste stream.
 - Hazard information for substances is sourced from:
 - o Analytical results
 - Hazardous relevant ingredients, SDS (where relevant).
 - Supplement to SANS 10234:2008 Edition 1.
 - o European Chemicals Agency, Classification & Labelling Inventory Database.
 - US Centre for Disease Control (CDC).
- The mixture has a pH of 7.3 9.6

Hazard Class	Hazard Category	Classification Criteria	Assessed Concentration wt.%	Waste Hazard Category
		Physical Hazards		
Explosives	Division 1.1 – 1.6	According to the results of the tests in Part I of the UN Manual of tests and criteria	No substance identified	
Flammable Gases	1	 Gases and gas mixtures that, at 20^oC and a standard pressure of 101.3 kPa: a) Are ignitable when in a mixture of 13% or less by volume in air, or b) Have a flammable range with air of at least 12 percentage points regardless of the lower flammable limit Gases or gas mixtures, other than those of category 1, which, at 20^oC and a standard pressure of 101.3 kPa, have a flammable range while mixed 	No substance identified No substance identified	
Flammable Aerosols	1 - 2	in air On the basis of its components, of its chemical heat of combustion and, if applicable, of the results of the foam test, for foam aerosols, and of the ignition distance test and enclosed space test, for spray aerosols (see Part III, section 31 of the UN Manual of tests and criteria)	No substance identified	
Oxidizing Gases	1	Any gas that may, generally by providing oxygen, cause or contribute to the combustion of other material more than air does	No substance identified	
Gases Under Pressure	Compressed Gas	A gas that, when packaged under pressure, is entirely gaseous at -50°C, including all gases with a critical temperature $\leq -50^{\circ}C$	No substance identified	

Hazard Class	Hazard	Classification Criteria	Assessed	Waste Hazard
	Category		Concentration wt.%	Category
	Liquefied Gas	A gas that, when packaged under pressure, is partially liquid at temperatures above -50°C A distinction is made between:	No substance identified	
		 a) High pressure liquefied gas, a gas with a critical temperature between -50°C and +65°C, and b) Low pressure liquefied gas, 		
		a gas with a critical temperature above +65°C		
	Refrigerated Liquefied Gas	A gas that, when packaged, is made partially liquid because of its low temperature	No substance identified	
	Dissolved Gas	A gas that, when packaged under pressure, is dissolved in a liquid phase solvent	No substance identified	
	1	Flash point $< 23^{\circ}C$ and initial boiling point $\le 35^{\circ}C$	No substance identified	
Flammable	2	Flash point < 23 ^o C and initial boiling point > 35 ^o C	No substance identified	
Liquids	3	Flash point $< 23^{\circ}$ C and $\le 60^{\circ}$ C	No substance identified	
	4	Flash point > 60° C and $\leq 93^{\circ}$ C	No substance identified	
	1	 a) substance and mixtures other than metal powders The wetted zone does not stop the fire and the burning time is < 45s, or the 	No substance identified	
		burning rate is $> 2,2$ mm/s b) The burning time is ≤ 5 min		
Flammable Solids	2	 a) substance and mixtures other than metal powders The wetted zone does not stop the fire 	No substance identified	
		for at least 4 minutes and the burning time is < 45s, or the burning rate is > 2,2mm/s		
		b) The burning time is > 5 min and ≤ 10 min		

Hazard Class	Hazard Category	Classification Criteria	Assessed Concentration wt.%	Waste Hazard Category
	Туре А	According to the results of the tests in Part II, section 20.4.2 of the UN Manual of tests and criteria	No substance identified	
	Туре В	According to the results of the tests in Part II, section 20.4.2 of the UN Manual of tests and criteria	No substance identified	
Self-Reactive Substances	Types C and D	According to the results of the tests in Part II, section 20.4.2 of the UN Manual of tests and criteria	No substance identified	
	Types E and F	According to the results of the tests in Part II, section 20.4.2 of the UN Manual of tests and criteria	No substance identified	
	Type G	According to the results of the tests in Part II, section 20.4.2 of the UN Manual of tests and criteria	No substance identified	
Pyrophoric Liquids	1	The liquid ignites within 5 min when added to an inert carrier and exposed to air, or it ignites or chars a filter paper on contact with air within 5 min	No substance identified	
Pyrophoric Solids	1	The solid ignites within 5 min of coming into contact with air	No substance identified	
Self-Heating Substances	1	A positive result is obtained in a test using a cubical container of sides 25 mm at 140°C	No substance identified	
	2	 a) A positive result is obtained in a test using a cubical container of sides 100 mm at 140°C and a negative result is obtained in a test using a cubical container of sides 25 mm at 140°C and the substance is to be packed in the packages with a volume of more than 3 m³, or b) A positive result is obtained in a test using a cubical container of sides 100 mm at 1400C and a negative result is obtained in a test using a cubical container of sides 25 mm at 140°C, a positive result is obtained in a test using a cubical container of sides 100mm at 120°C and the substance is to be packed in packages with a volume of more than 450litres, or c) A positive result is obtained 	No substance identified	

Hazard Class	Hazard Category	Classification Criteria	Assessed Concentration wt.%	Waste Hazard Category
		in a test using a cubical container of sides 100 mm at 140°C and a negative result is obtained in a test using a cubical container of sides 25 mm at 140°C and a positive result is obtained in a test using a cubical container of sides 100 mm at 100°C		
	1	Any substance that reacts vigorously with water at ambient temperatures and demonstrates a tendency for the gas produced to ignite spontaneously, or that reacts readily with water at ambient temperatures such that the rate of evolution of flammable gas is equal to or greater than 10L/kg of substance over any 1min	No substance identified	
Substances that, on contact with water, emit flammable gases	2	Any substance that reacts vigorously with water at ambient temperatures and demonstrates a tendency for the gas produced to ignite spontaneously, or that reacts readily with water at ambient temperatures such that the rate of evolution of flammable gas is equal to or greater than 10L/kg of substance over any 1min	No substance identified	
	3	Any substance that reacts slowly with water at ambient temperatures such that the rate of evolution of flammable gas is equal to or greater than 1L/kg of substance per hour, and that does not meet the criteria for the categories 1 and 2	No substance identified	
	1	Any substance that, in the 1 : 1 mixture, by mass, of substance and cellulose tested, spontaneously ignites, or the mean pressure rise time of a 1 : 1 mixture, by mass of 50% perchloric acid and cellulose	No substance identified	
Oxidizing Liquids	2	Any substance that, in the 1 : 1 mixture, by mass, of substance and cellulose tested, exhibits a mean pressure rise time less than or to the mean pressure rise time of a 1 : 1 mixture, by mass, of 40% aqueous sodium chlorate solution and cellulose, and the criteria for category 1 are not met	No substance identified	
	3	Any substance that, in the 1 : 1 mixture by mass, of substance and cellulose tested, exhibits a mean pressure rise time less than or equal to the mean pressure rise time of a 1 : 1 mixture, by mass, of 65% aqueous nitric acid and cellulose, and the	No substance identified	

Hazard Class	Hazard Category	Classification Criteria	Assessed Concentration wt.%	Waste Hazard Category
		criteria for categories 1 and 2 are not met		
	1	Any substance that, in the 4 : 1 or 1: 1 sample-to-cellulose ratio, by mass, exhibits a mean burning time less than the mean burning time of a 3 : 2 mixture, by mass, of potassium bromate and cellulose	No substance identified	
Oxidizing Solids	2	Any substance that, in the 4 : 1 or 1: 1 sample-to-cellulose ratio, by mass, exhibits a mean burning time equal to or less than the mean burning time of a 2 : 3 mixture, by mass, of potassium bromate and cellulose and the criteria for category 1 are not met	No substance identified	
	3	Any substance that, in the 4 : 1 or 1: 1 sample-to-cellulose ratio, by mass, exhibits a mean burning time equal to or less than the mean burning time of a 3 : 7 mixture, by mass, of potassium bromate and cellulose and the criteria for categories 1 and 2 are not met	No substance identified	
	Туре А	According to the results of test series A to H in the Part II, Section 20.4.3 of the UN manual of tests and criteria	No substance identified	
	Туре В	According to the results of test series A to H in the Part II, Section 20.4.3 of the UN manual of tests and criteria	No substance identified	
Organic Peroxides	Type C and D	According to the results of test series A to H in the Part II, Section 20.4.3 of the UN manual of tests and criteria	No substance identified	
	Type E and F	According to the results of test series A to H in the Part II, Section 20.4.3 of the UN manual of tests and criteria	No substance identified	
	Type G	According to the results of test series A to H in the Part II, Section 20.4.3 of the UN manual of tests and criteria	No substance identified	
Corrosive to Metals	1	Corrosion rate on steel or aluminium surfaces exceeding 6,25mm/year at 55 ⁰ C	No substance identified	
		Health Hazards		
Acute toxicity	1, 2, 3, 4 & 5	If a mixture acute toxicity estimate (ATE) is within a specified range specific to routes of exposure.	No substance identified	
Skin Corrosion/ Irritation	1	If an individual substance \geq 5% and is classified under category 1, or if a mixture pH \geq 11.5 or \leq 2, or if an individual substance \geq 1% has pH \geq 11.5 or \leq 2, or if an individual	No substance identified	

Hazard Class	Hazard Category	Classification Criteria	Assessed Concentration wt.%	Waste Hazard Category
		substance $\geq 1\%$ for which additivity does not apply is corrosive (category 1).		
	2	If an individual substance $\geq 1\%$ but $\leq 5\%$ and is classified under category 1, or if an individual substance $\geq 10\%$ and is classified under category 2, or if (10 × skin category 1) +skin category 2 \geq 10%, or if an individual substance $\geq 3\%$ for which additivity does not apply and is classified skin irritant category 2.	Iron Oxide (Category 2), at 0.83 – 14.97%	Skin Irritation (Category 2)
	3	If an individual substance < 10% but $\geq 1\%$ and is classified under category 2, or if an individual substance $\geq 10\%$ and is classified under category 3, or if (10 × skin category 1) +skin category 2 < 10% but $\geq 1\%$, or if (10 × skin category 1 + skin category 2 + skin category 3) $\geq 10\%$	No substance identified	
	1	If an individual substance $\geq 3\%$ and is classified skin/eye category 1, or if a mixture pH ≥ 11.5 or ≤ 2 , or if (skin category 1 + eye category 1) $\geq 3\%$, or if an individual substance $\geq 1\%$ has pH ≥ 11.5 or ≤ 2 , or if an individual substance $\geq 1\%$ for which additivity does not apply is corrosive (category 1)	No substance identified	
Serious Eye Damage/Eye irritation	2	If an individual substance $\geq 1\%$ but < 3% and is classified skin/eye category 1, or if an individual substance $\geq 10\%$ and is classified under category 2A, or if (10 × eye category 1 +eye category 2A) $\geq 10\%$, or if (skin category 1 + eye category 1) $\geq 1\%$ but < 3%, or if an individual substance \geq 3% for which additivity does not apply and is classified skin/eye irritant category 2, or if (10 × eye category 1 + 10 × skin category 1 + eye category 2A/2B) $\geq 10\%$.	Iron Oxide (Category 2), at 0.83 – 14.97%	Eye Irritation (Category 2)
Respiratory sensitization and	Skin sensitization Category 1	If an individual substance $\geq 0.1\%$ and is classified skin sensitization category 1 If an individual solid or liquid or	No substance identified No substance	
skin sensitization	Respiratory sensitization Category 1	gaseous substance $\geq 0.1\%$ and is classified respiratory sensitization category 1	identified	
Germ Cell Mutagenicity	1	If an individual substance $\geq 0.1\%$ and is classified under category 1 If an individual substance $\geq 0.1\%$ and	No substance identified No substance	
	1A	is classified under category 2 If an individual substance $\geq 0.1\%$ and	identified No substance	
Carcinogenicity		is classified category 1 carcinogen	identified	

Hazard Class	Hazard Category	Classification Criteria	Assessed Concentration wt.%	Waste Hazard Category
		(known)		
	1B	If an individual substance $\geq 0.1\%$ and is classified category 1 carcinogen (presumed)	Quartz (Category 1A), at 2.09 – 42.71%	Carcinogenicity (Category 1B)
	2	If an individual substance $\geq 0.1\%$ and is classified category 2 carcinogen.	No substance identified	
	1A	If an individual substance ≥ 0.1% and is classified reproductive toxicant category 1 (known).	No substance identified	
Reproducti ve	1B	If an individual substance $\geq 0.1\%$ and is classified reproductive toxicant category 1 (presumed).	No substance identified	
Toxicity	2	If an individual substance $\geq 0.1\%$ and is classified reproductive toxicant category 2.	No substance identified	
	Category for effects on, or via lactation	If an individual substance $\geq 0.1\%$ and is classified reproductive toxicant for effects on, or via lactation.	No substance identified	
	1	If an individual substance≥1% and is classified STOT – single exposure category 1.	No substance identified	
Specific Target Organ Toxicity – Single Exposure	2	If an individual substance≥1% and is classified STOT – single exposure category 2.	No substance identified	
Single Laposure	3	If an individual substance $\geq 20\%$ and is classified STOT – single exposure category 3.	Quartz (Category 3), at 2.09 – 42.71%	Specific Target Organ Toxicity – Single Exposure (Category 3)
Specific Target Organ Toxicity – Repeated	1	If an individual substance ≥1% and is classified STOT – repeated exposure category 1.	Quartz (Category 1A), at 2.09 – 42.71%, and Silicon Dioxide (Category 1), at 8.61 – 31.59%	Specific Target Organ Toxicity – Repeated Exposure (Category 1)
Exposure	2	If an individual substance≥1% and is classified STOT – Repeated exposure category 2	No substance identified	
Aspiration	1	If an individual substance $\geq 10\%$ and is classified as aspiration toxicant category 1 and has a kinematic viscosity ≤ 20.5 mm ² /s, at 40 °C	No substance identified	
Hazards	2	If an individual substance $\geq 10\%$ and is classified as aspiration toxicant category 2 and has a kinematic viscosity $\leq 14 \text{ mm}^2/\text{s}$, at 40 °C	No substance identified	
		Hazards to the Aquatic Environme		
Acute Aquatic	1	If (Multiplication factor as determined in the GHS \times Acute 1) > 25%.	No substance identified	
Toxicity	2	If (Multiplication factor as determined in the GHS $\times 10 \times Acute$ 1 + Acute 2) > 25%.	No substance identified	

Hazard Class	Hazard Category	Classification Criteria	Assessed Concentration wt.%	Waste Hazard Category
	3	If (Multiplication factor as determined in the GHS $\times 100 \times Acute$ 1 + 10 × Acute 2 + Acute 3) > 25%.	No substance identified	
	1	If (Multiplication factor as determined in the GHS \times Chronic 1) $> 25\%$.	No substance identified	
Chronic Aquatic Toxicity	2	If (Multiplication factor as determined in the GHS \times 10 \times Chronic 1 + Chronic 2) > 25%.	No substance identified	
	3	If (Multiplication factor as determined in the GHS \times 100 \times	No substance identified	
	4	If (Chronic 1 + Chronic 2 + Chronic 3 + Chronic 4) > 25%	No substance identified	

4. DISCUSSION

The Chrome Direct Reduction Slimes Stockpile classifies as hazardous. The intrinsic hazards posed by the Chrome Direct Reduction Slimes Stockpile relates predominantly to Skin Irritation – Category 2, Eye Irritation – Category 2A, Carcinogenicity – Category 1B, Specific Target Organ Toxicity – Single Exposure – Category 3, and Specific Target Organ Toxicity – Repeated Exposure – Category 1 respectively.

As per the 'Waste Classification and Management Regulations, 2013 (GNR634)', a safety data sheet (SDS) is required for the Chrome Direct Reduction Slimes Stockpile.

ANNEXURE A: GHS CLASSIFICATION CRITERIA

Skin Corrosion/irritation

SANS10234, Table 26 – Cut-off values/concentration limits of the ingredients of a mixture classified as skin category 1, 2 or 3 that trigger classification of the mixture as hazardous to skin					
Sum of ingredients	Cut-off values/con	centration limits of the ing	gredients that trigger the		
classified as:	classification of a n	nixture			
		%			
	Skin corrosive		Skin irritant		
	Category 1	Category 2 Category 3			
Skin category 1	≥ 5	≥1 but < 5			
Skin category 2		≥10	10 > C ≥ 1		
Skin category 3			≥10		
(10 X skin category		≥10	10 > C ≥ 1		
1) + skin category 2					
(10 X skin category		≥10			
1) + skin category 2+					
skin category 3					

Serious Eye Damage/Eye Irritation

SANS 10234 Table 30 – Cut-off values/concentration limits of the ingredients of a mixture classified as category for skin effects and/or category 1 or 2 for eye effects that trigger classification of the mixture as hazardous to the eye

Sum of ingredients classified	Cut-off values/concentration limits of the ingredients that trigger the		
as:	classification of a mixture		
		%	
	Irreversible eye effects	Reversible eye effects	
	Category 1	Category 2	
Eye or skin category 1	≥ 3	3 > C ≥ 1	
Eye category 2A		≥10	
(10 X eye category 1) + eye		≥10	
category 2A		210	
Skin category 1 + eye	≥ 3	3 > C ≥ 1	
category 1	_ 0		
10 X (skin category 1 + eye			
category 1) + eye category		≥10	
2A or <u>2B</u>			

Carcinogenicity

SANS10234, Table 39 - Cut-off values/concentration limits of ingredients classified as carcinogens that trigger classification of a mixture.				
Ingredient classified as:	Cut-off values/concentration limits of the ingredients that trigger the classification of a mixture %			
	Category 1 carcinogen Category 2 carcinogen			
Category 1 carcinogen	≥ 0.1%			
Category 2 carcinogen	-	≥ 0.1% ≥ 1.0%		

Reproductive Toxicity—Fertility

SANS10234, Table 42 – Cut-off values/concentration limits of the ingredients of a mixture classified as						
reproductive toxicants that tr	reproductive toxicants that trigger classification of the mixture					
Sum of ingredients classified	Cut-off values/co	oncentration limits o	f the ingredients that trigger the			
as:	classification of a	a mixture				
			%			
	Category 1	Category	Additional category for effects			
		2	on, or via lactation			
Category 1 reproductive	≥0.1					
toxicant						
Category 2 reproductive	≥0.1					
toxicant						
Additional category for	≥0.1					
effects on, or via lactation						

Germ Cell Mutagenicity

SANS 12034, Table 36 - Cut-off values/concentration limits of ingredients of a mixture that trigger classification as germ cell mutagens				
Hazard category of the	Cut-off values/concentration lim	its of the ingredients that trigger the		
ingredient(s)	classification of a mixture			
	%			
	Category 1 Category 2			
Category 1	≥ 0.1%			
Category 2		≥ 1%		

Specific Target Organ Toxicity (STOT)—Single Exposure

SANS 12034, Table 46 - Cut-off values/concentration limits of ingredients of a mixture that trigger classification as a specific target organ toxicant – single exposures			
Hazard category of the Cut-off values/concentration limits of the ingredients that trigger the classification of a mixture %			
	Category 1 Category 2		
Category 1	≥ 1%		
Category 2		≥ 1%	

Specific Target Organ Toxicity (STOT)—Repeated Exposure

SANS 12034, Table 51 - Cut-off values/concentration limits of ingredients of a mixture that trigger				
classification as a specific target organ toxicant – repeated exposures				
Hazard category of the Cut-off values/concentration limits of the ingredients that trigger the				
ingredient(s)	gredient(s) classification of a mixture			
	%			
	Category 1 Category 2			
Category 1	≥ 1%			
Category 2		≥ 1%		

Hazards to the Aquatic Environment

SANS 10234, Table 58 – Classification of Mixtures for Acute Hazards to the Aquatic Environment, based on the summation of classified components				
Sum of the components/ingredients classified as: Acute hazard category of the mixture				
Acute 1 X M 1 >25%				
(M X 10 X Acute 1) + Acute 2 2 >25%				
(M X 100 X Acute 1) + (10 X Acute 2) + Acute 3 3 >25%				

* LC50 KMnO4 \geq 0.1 \leq 1.0 mg/l; therefore M = 1

SANS 10234, Table 59 – Classification of Mixtures for Chronic Hazards to the Aquatic Environment, based on the summation of classified components				
Sum of the components/ingredients classified	as:	Chronic hazard category of the		
		mixture		
Chronic 1 X M	>25%	1		
(M X 10 X Chronic 1) + Chronic 2 >25% 2				
(M X 100 X Chronic 1) + (10 X Chronic 2) + Chronic	: 3 >25%	3		
Chronic 1 + Chronic 2 + Chronic 3 + Chronic 4	>25%	4		

ANNEXURE B: LABORATORY RESULTS

Sample Identification Number: IW2020-0469

Laboratory Analysis Report for Landfill Assessment				
Requested By:	Keelan Chetty Waste Name: MF5 1-2M Slime Stockpile Chrome Direct Reduction			
Generator:	Samancor Chrome	Received Date:	12/06/2020	
Lab Reference:	IW2020-0469	Analysis Date:	03/07/2020	
No. of Samples:	1	Report Date:	28/07/2020	
Sample Description:	Greyish brown clay			

Table 1: Miscellaneous tests for sample: IW2020-0469 *

Parameter Tested	Unit	IW2020-0469
Sample Moisture Content	% (w/w)	48.36
Conductivity ^A	uS/cm	172.1
Initial Sample pH ^A	pH Units	9.27
Sample pH after HCl Addition	pH Units	NT
Leach Solution Applied	Solution Type	Water
Final Leach Solution pH	pH Units	NT
Physical State	NA	Solid
Water Miscibility	NA	Immiscible
Calorific Value	MJ/kg	NT
Additional Information	NA	Low Odour

* UTD = Unable to determine; NT = Not tested; A = SANAS accredited method; Where not specified, the methods are not accredited; Conductivity and pH measured by electronic conductivity and pH meter at ~22C (10% H2O extracts of solids). Moisture by mass loss on heating at ~103C for 30 mins.

Table 2: GC-MS total and leachable organics for sample: IW2020-0469 *

Contaminant Name	Detection Limit (mg/kg)	Concentration (mg/kg)	Theoretical Max. Leach Concentration (mg/L)
Nonane	2.000	BDL	BDL
Decane	2.000	BDL	BDL
Dodecane	2.000	BDL	BDL
Tetradecane	2.000	BDL	BDL
Hexadecane	2.000	BDL	BDL
Octadecane	2.000	BDL	BDL

T0736

Nonadecane	2.000	BDL	BDL
Eicosane	2.000	BDL	BDL
Docosane	2.000	BDL	BDL
Tetracosane	2.000	BDL	BDL
Hexacosane	2.000	BDL	BDL
Octacosane	2.000	BDL	BDL
Hentriacontane	2.000	BDL	BDL
n-Hexane	0.002	BDL	BDL
Heptane	0.002	BDL	BDL
Octane	0.002	BDL	BDL
Nonane2	0.002	BDL	BDL
Decane3	0.002	BDL	BDL
1,2-Dichloroethylene ^A	0.002	BDL	BDL
Chloroform ^A	0.002	BDL	BDL
1,1,1-Trichloroethane ^A	0.002	BDL	BDL
1,2-Dichloroethane ^A	0.002	BDL	BDL
1,1-Dichloropropene ^A	0.002	BDL	BDL
Benzene ^A	0.002	BDL	BDL
Carbon Tetrachloride ^A	0.002	BDL	BDL
Trichloroethylene ^A	0.002	BDL	BDL
Bromodichloromethane ^A	0.002	BDL	BDL
cis-1,3-Dichloropropene ^A	0.002	BDL	BDL
Toluene ^A	0.002	BDL	BDL
1,1,2 Trichloroethane ^A	0.002	BDL	BDL
1,3-Dichloropropane ^A	0.002	BDL	BDL
Dibromochloromethane ^A	0.002	BDL	BDL
1.2 Dibromoethane ^A	0.002	BDL	BDL
Tetrachloroethylene ^A	0.002	BDL	BDL
Chlorobenzene ^A	0.002	BDL	BDL
1,1,1,2-Tetrachloroethane ^A	0.002	BDL	BDL
Ethylbenzene ^A	0.002	BDL	BDL
o-Xylene ^A	0.002	BDL	BDL
Styrene ^A	0.002	BDL	BDL
1,1,2,2-Tetrachloroethane ^A	0.002	BDL	BDL

1,2,3-Trichloropropane ^A	0.002	BDL	BDL
Bromobenzene ^A	0.002	BDL	BDL
Propylbenzene ^A	0.002	BDL	BDL
4-Chlorotoluene ^A	0.002	BDL	BDL
1,2,3-Trimethylbenzene ^A	0.002	BDL	BDL
tert-Butylbenzene ^A	0.002	BDL	BDL
1,4-Dichlorobenzene ^A	0.002	BDL	BDL
sec-Butylbenzene ^A	0.002	BDL	BDL
1,2-Dichlorobenzene ^A	0.002	BDL	BDL
n-Butylbenzene ^A	0.002	BDL	BDL
Hexachloroethane ^A	0.002	BDL	BDL
1,2 Dibromo-3-chloropropane ^A	0.002	BDL	BDL
1,3,5-Trichlorobenzene ^A	0.002	BDL	BDL
Naphthalene ^A	0.002	BDL	BDL
Hexachlorobutadiene ^A	0.002	BDL	BDL
Phenol	2.000	BDL	BDL
Bis(2-chloroethyl) ether	2.000	BDL	BDL
2-Chlorophenol	2.000	BDL	BDL
1,4-Dichlorobenzene	2.000	BDL	BDL
1,2-Dichlorobenzene	2.000	BDL	BDL
2-Methylphenol (o-Cresol)	2.000	BDL	BDL
Bis(2-chloro-1-methylethyl) ether	2.000	BDL	BDL
4-Methylphenol (p-Cresol)	2.000	BDL	BDL
Hexachloroethane	2.000	BDL	BDL
Nitrobenzene	2.000	BDL	BDL
Isophorone	2.000	BDL	BDL
2-Nitrophenol	2.000	BDL	BDL
2,4-Dimethylphenol	2.000	BDL	BDL
Bis(2-chloroethoxy) methane	2.000	BDL	BDL
2,4-Dichlorophenol	2.000	BDL	BDL
1,3,5-Trichlorobenzene	2.000	BDL	BDL
Naphthalene	2.000	BDL	BDL
p-Chloroaniline	2.000	BDL	BDL
4-Chloro-3-methylphenol	2.000	BDL	BDL

2-Methylnaphthalene	2.000	BDL	BDL
Hexachlorocyclopentadiene	2.000	BDL	BDL
2,4,6-Trichlorophenol	2.000	BDL	BDL
2,4,5-Trichlorophenol	2.000	BDL	BDL
1-Chloronaphthalene	2.000	BDL	BDL
Diphenyl ether	2.000	BDL	BDL
2-Nitroaniline	2.000	BDL	BDL
Dimethyl phthalate	2.000	BDL	BDL
2-methyl-1,3-dinitro-Benzene	2.000	BDL	BDL
Acenaphthylene	2.000	BDL	BDL
Acenaphthene	2.000	BDL	BDL
Dibenzofuran	2.000	BDL	BDL
1-Methyl-2,4-dinitrobenzene	2.000	BDL	BDL
Diethylphthalate	2.000	BDL	BDL
1-chloro-4-phenoxybenzene	2.000	BDL	BDL
dimethyl-Cyanamide	2.000	BDL	BDL
Fluorene	2.000	BDL	BDL
3-Methyl-2-phenylpyridine	2.000	BDL	BDL
Azobenzene	2.000	BDL	BDL
1-Bromo-4-phenoxybenzene	2.000	BDL	BDL
Hexachlorobenzene	2.000	BDL	BDL
Pentachlorophenol	2.000	BDL	BDL
Phenanthrene	2.000	BDL	BDL
5H-Indeno[1,2-b]pyridine	2.000	BDL	BDL
Dibutyl phthalate	2.000	BDL	BDL
Fluoranthene	2.000	4.070	0.204
Benzyl butyl phthalate	2.000	BDL	BDL
Triphenylene	2.000	BDL	BDL
Benz[a]anthracene	2.000	BDL	BDL
Bis(2-ethylhexyl) phthalate	2.000	BDL	BDL
Di-n-octyl phthalate	2.000	BDL	BDL
Benzo[b]fluoranthene	2.000	BDL	BDL
Indenol[1,2,3-cd]pyrene	2.000	BDL	BDL
Benzo[b]triphenylene	2.000	BDL	BDL
Benzo[ghi]perylene	2.000	BDL	BDL

* UTD = Unable to determine; NT = Not tested; BDL = Element below indicated detection limit; A = SANAS accredited method; Where not specified, the methods are not accredited; All elements measured by GC-MS analysis

Contaminant Name	Total (mg/kg)	Leachable (mg/L)	Waste Type
Inorganic Anions			
TDS	1118.65	55.9325	Type 4
	Organic Compo	ounds	
Benzene	BDL	BDL	Туре 3
Benzo(a)pyrene	NT	NT	UTD
Carbon tetrachloride	BDL	BDL	Туре 3
Chlorobenzene	BDL	BDL	Туре 3
Chloroform	BDL	BDL	Туре 3
2-Chlorophenol	BDL	BDL	Туре 3
Di (2 ethylhexyl) phthalate	BDL	BDL	Туре 3
1,2-Dichlorobenzene	BDL	BDL	Туре 3
1,4-Dichlorobenzene	BDL	BDL	Туре 3
1,2-Dichloroethane	BDL	BDL	Туре 3
1,1-Dichloroethylene	NT	NT	UTD
1,2-Dichloroethylene	NT	NT	UTD
Dichloromethane	NT	NT	UTD
2,4-Dichlorophenol	BDL	BDL	Туре 3
2,4-Dinitrotoluene	NT	NT	UTD
Ethylbenzene	BDL	BDL	Туре 3
Formaldehyde	NT	NT	UTD
Hexachlorobutadiene	BDL	BDL	Туре 3
Methyl ethyl ketone	NT	NT	UTD
MTBE (Methyl t-butyl ether)	NT	NT	UTD
Nitrobenzene	BDL	BDL	Туре 3
PAHs (total)	4.000	N/A	Туре 3
Petroleum H/Cs, C6 to C9	BDL	N/A	Туре 3
Petroleum H/Cs, C10 to C36	BDL	N/A	Туре 3
Phenols (total, non-			
halogenated)	BDL	BDL	Туре 3
Polychlorinated biphenyls	NT	NT	UTD
Styrene	BDL	BDL	Туре 3
1,1,1-Tetrachloroethane	BDL	BDL	Туре 3
1,1,2-Tetrachloroethane	BDL	BDL	Туре 3
Tetrachloroethylene	NT	NT	UTD
Toluene	BDL	BDL	Туре 3

Table 3: Landfill assessment for: IW2020-0469 *

Trichlorobenzenes (Total)	BDL	BDL	Туре 3
1,1,1-Trichloroethane	BDL	BDL	Туре 3
1,1,2-Trichloroethane	BDL	BDL	Туре 3
Trichlorophenol	NT	NT	UTD
2,4,6-Trichlorophenol	BDL	BDL	Туре 3
Vinyl Chloride	NT	NT	UTD
Xylene	BDL	BDL	Туре 3

*UTD = Unable to determine; NT = Not tested; BDL = Element below indicated detection limit;

Determining the landfill site class for disposal:

The assigned waste type determines the class of landfill site where a particular waste stream may be disposed. A waste type of one (Type 1) is assigned to waste that presents the most risk to the environment when disposed of at a landfill site and therefore requires disposal at a site with stringent engineering controls corresponding to a so called "Class A" site. Type four (Type 4) waste presents a low risk to the environment when disposed of to a landfill site and therefore may be disposed of at a less stringently engineered, "Class D" site. Type zero waste (Type 0) may not be disposed of to any landfill site in South Africa without prior treatment. The *National Waste Classification and Management Regulations* detail specific requirements surrounding the classification and assessment of waste for disposal to landfill (See references). Note that a GHS (SANS10234) compliant classification and safety data sheet is required before a final waste management decision should be taken and should be read in conjunction with this assessment.

Standard Operational Procedure:

Identification of analysis methods:

IW-S-1: Determination of Metals in Liquids and solids using ICP-OES Optima 8300; IW-S-2: Determination of the VOC content of liquid and solids using GC6850, MS5976C; IW-S-3: pH Measurement; IW-S-4: EC Measurement; IW-S-5: Calibration and measurement of samples using Supercal Modular calorimeter; IW-S-6: Toxicity characteristic leaching procedure – TCLP; IW-S-7: Field Protable X-ray Flourecence FTXRF; AS 4439.1-1999: Wastes, sediments and contaminated soils - Preparation of leachates - Preliminary assessment; AS 4439.3-1997: Wastes, sediments and contaminated soils - Preparation of leachates - Bottle leaching procedures.

Scope of Accreditation:

Materials/Products Tested	Types of Tests	Standard Specifications, Equipment/Techniques Used
1- Waste (Solid, sludge and liquid)	Quantification of metals by ICP-OES following ASLP, reagent water (Ag, Al, As, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Rb, P, Pb, Sb, Se, Sn, Sr, Ti, Tl, U, V, Zn)	IW-M-01 - Based on method 6010C
2- Solids & Liquids	Determination of VOC; BTEX by GC/MS Headspace	IW-M-02 - Based on method EPA 8260B; EPA 5030B(Liquid) and EPA 5035 (solid)
3- Potable water & leachates	pH at 25 °C	IW-M-03
4- Potable water & leachates	Electrical Conductivity at 25°C	IW-M-04

Disclaimer:

Analysis results relate only to the samples submitted. The laboratory has no control over the sampling protocol, the representivity of the samples and the manner in which the samples were collected, transported, stored, preserved or otherwise handled outside of the laboratory facility and therefore takes no responsibility whatsoever for these activities. Third parties using INTERWASTE results can verify the results by contacting the laboratory. INTERWASTE are not liable or responsible for the customer use and/or interpretation of test results. This certificate cannot be reproduced without the written consent of INTERWASTE laboratory.

Confidentiality Disclaimer:

All test results are confidential and are issued on a clear and accurate report of Analysis. Reports are submitted for exclusive use by our clients and/or our sales consultants. No reference to the work, the results, or to INSTERWASTE HUB LAB may be made in any form of advertising, news release or other public announcement without written authorization.

References

1.) Government Notice R.365, National Environmental Management: Waste Act (59/2008): National norms and standards for the assessment of waste for landfill disposal, Gazette No. 36

Sample Identification Number: IW2020-0468

Laboratory Analysis Report for Landfill Assessment			
Requested By:	Keelan Chetty	Waste Name:	MF2 0.5-1M Slime Stockpile Chrome Direct Reduction
Generator:	Samancor Chrome	Received Date:	12/06/2020
Lab Reference:	IW2020-0468	Analysis Date:	03/07/2020
No. of Samples:	1	Report Date:	28/07/2020
Sample Description:	Dark grey dry slime		

Table 1: Miscellaneous tests for sample: IW2020-0468 *

Parameter Tested	Unit	IW2020-0468
Sample Moisture Content	% (w/w)	35.78
Conductivity ^A	uS/cm	2230
Initial Sample pH ^A	pH Units	8.92
Sample pH after HCl Addition	pH Units	NT
Leach Solution Applied	Solution Type	Water
Final Leach Solution pH	pH Units	NT
Physical State	NA	Solid
Water Miscibility	NA	Immiscible
Calorific Value	MJ/kg	NT
Additional Information	NA	Low Odour

* UTD = Unable to determine; NT = Not tested; A = SANAS accredited method; Where not specified, the methods are not accredited; Conductivity and pH measured by electronic conductivity and pH meter at ~22C (10% H2O extracts of solids). Moisture by mass loss on heating at ~103C for 30 mins.

Table 2: GC-MS total and leachable organics for sample: IW2020-0468 *

Contaminant Name	Detection Limit (mg/kg)	Concentration (mg/kg)	Theoretical Max. Leach Concentration (mg/L)
Nonane	2.000	BDL	BDL
Decane	2.000	BDL	BDL
Dodecane	2.000	BDL	BDL
Tetradecane	2.000	BDL	BDL
Hexadecane	2.000	BDL	BDL
Octadecane	2.000	BDL	BDL

T0736

Nonadecane	2.000	BDL	BDL
Eicosane	2.000	BDL	BDL
Docosane	2.000	BDL	BDL
Tetracosane	2.000	BDL	BDL
Hexacosane	2.000	BDL	BDL
Octacosane	2.000	BDL	BDL
Hentriacontane	2.000	BDL	BDL
n-Hexane	0.002	BDL	BDL
Heptane	0.002	BDL	BDL
Octane	0.002	BDL	BDL
Nonane2	0.002	BDL	BDL
Decane3	0.002	BDL	BDL
1,2-Dichloroethylene ^A	0.002	BDL	BDL
Chloroform ^A	0.002	BDL	BDL
1,1,1-Trichloroethane ^A	0.002	BDL	BDL
1,2-Dichloroethane ^A	0.002	BDL	BDL
1,1-Dichloropropene ^A	0.002	BDL	BDL
Benzene ^A	0.002	BDL	BDL
Carbon Tetrachloride ^A	0.002	BDL	BDL
Trichloroethylene ^A	0.002	BDL	BDL
Bromodichloromethane ^A	0.002	BDL	BDL
cis-1,3-Dichloropropene ^A	0.002	BDL	BDL
Toluene ^A	0.002	BDL	BDL
1,1,2 Trichloroethane ^A	0.002	BDL	BDL
1,3-Dichloropropane ^A	0.002	BDL	BDL
Dibromochloromethane ^A	0.002	BDL	BDL
1.2 Dibromoethane ^A	0.002	BDL	BDL
Tetrachloroethylene ^A	0.002	BDL	BDL
Chlorobenzene ^A	0.002	BDL	BDL
1,1,1,2-Tetrachloroethane ^A	0.002	BDL	BDL
Ethylbenzene ^A	0.002	BDL	BDL
o-Xylene ^A	0.002	BDL	BDL
Styrene ^A	0.002	BDL	BDL
1,1,2,2-Tetrachloroethane ^A	0.002	BDL	BDL

1,2,3-Trichloropropane ^A	0.002	BDL	BDL
Bromobenzene ^A	0.002	BDL	BDL
Propylbenzene ^A	0.002	BDL	BDL
4-Chlorotoluene ^A	0.002	BDL	BDL
1,2,3-Trimethylbenzene ^A	0.002	BDL	BDL
tert-Butylbenzene ^A	0.002	BDL	BDL
1,4-Dichlorobenzene ^A	0.002	BDL	BDL
sec-Butylbenzene ^A	0.002	BDL	BDL
1,2-Dichlorobenzene ^A	0.002	BDL	BDL
n-Butylbenzene ^A	0.002	BDL	BDL
Hexachloroethane ^A	0.002	BDL	BDL
1,2 Dibromo-3-chloropropane ^A	0.002	BDL	BDL
1,3,5-Trichlorobenzene ^A	0.002	BDL	BDL
Naphthalene ^A	0.002	BDL	BDL
Hexachlorobutadiene ^A	0.002	BDL	BDL
Phenol	2.000	BDL	BDL
Bis(2-chloroethyl) ether	2.000	BDL	BDL
2-Chlorophenol	2.000	BDL	BDL
1,4-Dichlorobenzene	2.000	BDL	BDL
1,2-Dichlorobenzene	2.000	BDL	BDL
2-Methylphenol (o-Cresol)	2.000	BDL	BDL
Bis(2-chloro-1-methylethyl) ether	2.000	BDL	BDL
4-Methylphenol (p-Cresol)	2.000	BDL	BDL
Hexachloroethane	2.000	BDL	BDL
Nitrobenzene	2.000	BDL	BDL
Isophorone	2.000	BDL	BDL
2-Nitrophenol	2.000	BDL	BDL
2,4-Dimethylphenol	2.000	BDL	BDL
Bis(2-chloroethoxy) methane	2.000	BDL	BDL
2,4-Dichlorophenol	2.000	BDL	BDL
1,3,5-Trichlorobenzene	2.000	BDL	BDL
Naphthalene	2.000	BDL	BDL
p-Chloroaniline	2.000	BDL	BDL
4-Chloro-3-methylphenol	2.000	BDL	BDL

2-Methylnaphthalene	2.000	BDL	BDL
Hexachlorocyclopentadiene	2.000	BDL	BDL
2,4,6-Trichlorophenol	2.000	BDL	BDL
2,4,5-Trichlorophenol	2.000	BDL	BDL
1-Chloronaphthalene	2.000	BDL	BDL
Diphenyl ether	2.000	BDL	BDL
2-Nitroaniline	2.000	BDL	BDL
Dimethyl phthalate	2.000	BDL	BDL
2-methyl-1,3-dinitro-Benzene	2.000	BDL	BDL
Acenaphthylene	2.000	BDL	BDL
Acenaphthene	2.000	BDL	BDL
Dibenzofuran	2.000	BDL	BDL
1-Methyl-2,4-dinitrobenzene	2.000	BDL	BDL
Diethylphthalate	2.000	BDL	BDL
1-chloro-4-phenoxybenzene	2.000	BDL	BDL
dimethyl-Cyanamide	2.000	BDL	BDL
Fluorene	2.000	BDL	BDL
3-Methyl-2-phenylpyridine	2.000	BDL	BDL
Azobenzene	2.000	BDL	BDL
1-Bromo-4-phenoxybenzene	2.000	BDL	BDL
Hexachlorobenzene	2.000	BDL	BDL
Pentachlorophenol	2.000	BDL	BDL
Phenanthrene	2.000	BDL	BDL
5H-Indeno[1,2-b]pyridine	2.000	BDL	BDL
Dibutyl phthalate	2.000	BDL	BDL
Fluoranthene	2.000	BDL	BDL
Benzyl butyl phthalate	2.000	BDL	BDL
Triphenylene	2.000	BDL	BDL
Benz[a]anthracene	2.000	BDL	BDL
Bis(2-ethylhexyl) phthalate	2.000	BDL	BDL
Di-n-octyl phthalate	2.000	BDL	BDL
Benzo[b]fluoranthene	2.000	BDL	BDL
Indenol[1,2,3-cd]pyrene	2.000	BDL	BDL
Benzo[b]triphenylene	2.000	BDL	BDL
Benzo[ghi]perylene	2.000	BDL	BDL

* UTD = Unable to determine; NT = Not tested; BDL = Element below indicated detection limit; A = SANAS accredited method; Where not specified, the methods are not accredited; All elements measured by GC-MS analysis

Table 3: Landfill assessment for: Contaminant Name	Total (mg/kg)	Leachable (mg/L)	Waste Type
	Inorganic A		, ,,
TDS	14495	724.75	Type 4
	Organic Com	pounds	
Benzene	BDL	BDL	Type 3
Benzo(a)pyrene	NT	NT	UTD
Carbon tetrachloride	BDL	BDL	Type 3
Chlorobenzene	BDL	BDL	Type 3
Chloroform	BDL	BDL	Туре 3
2-Chlorophenol	BDL	BDL	Туре 3
Di (2 ethylhexyl) phthalate	BDL	BDL	Туре 3
1,2-Dichlorobenzene	BDL	BDL	Туре 3
1,4-Dichlorobenzene	BDL	BDL	Туре 3
1,2-Dichloroethane	BDL	BDL	Туре 3
1,1-Dichloroethylene	NT	NT	UTD
1,2-Dichloroethylene	NT	NT	UTD
Dichloromethane	NT	NT	UTD
2,4-Dichlorophenol	BDL	BDL	Туре 3
2,4-Dinitrotoluene	NT	NT	UTD
Ethylbenzene	BDL	BDL	Туре 3
Formaldehyde	NT	NT	UTD
Hexachlorobutadiene	BDL	BDL	Туре 3
Methyl ethyl ketone	NT	NT	UTD
MTBE (Methyl t-butyl ether)	NT	NT	UTD
Nitrobenzene	BDL	BDL	Туре 3
PAHs (total)	BDL	N/A	Туре 3
Petroleum H/Cs, C6 to C9	BDL	N/A	Туре 3
Petroleum H/Cs, C10 to C36	BDL	N/A	Туре 3
Phenols (total, non-			
halogenated)	BDL	BDL	Туре 3
Polychlorinated biphenyls	NT	NT	UTD
Styrene	BDL	BDL	Туре 3
1,1,1-Tetrachloroethane	BDL	BDL	Туре 3
1,1,2-Tetrachloroethane	BDL	BDL	Туре 3
Tetrachloroethylene	NT	NT	UTD
Toluene	BDL	BDL	Туре 3

Table 3: Landfill assessment for: IW2020-0468 *

Trichlorobenzenes (Total)	BDL	BDL	Туре 3
1,1,1-Trichloroethane	BDL	BDL	Туре 3
1,1,2-Trichloroethane	BDL	BDL	Туре 3
Trichlorophenol	NT	NT	UTD
2,4,6-Trichlorophenol	BDL	BDL	Туре 3
Vinyl Chloride	NT	NT	UTD
Xylene	BDL	BDL	Туре 3

*UTD = Unable to determine; NT = Not tested; BDL = Element below indicated detection limit;

Determining the landfill site class for disposal:

The assigned waste type determines the class of landfill site where a particular waste stream may be disposed. A waste type of one (Type 1) is assigned to waste that presents the most risk to the environment when disposed of at a landfill site and therefore requires disposal at a site with stringent engineering controls corresponding to a so called "Class A" site. Type four (Type 4) waste presents a low risk to the environment when disposed of to a landfill site and therefore may be disposed of at a less stringently engineered, "Class D" site. Type zero waste (Type 0) may not be disposed of to any landfill site in South Africa without prior treatment. The *National Waste Classification and Management Regulations* detail specific requirements surrounding the classification and assessment of waste for disposal to landfill (See references). Note that a GHS (SANS10234) compliant classification and safety data sheet is required before a final waste management decision should be taken and should be read in conjunction with this assessment.

Standard Operational Procedure:

Identification of analysis methods:

IW-S-1: Determination of Metals in Liquids and solids using ICP-OES Optima 8300; IW-S-2: Determination of the VOC content of liquid and solids using GC6850, MS5976C; IW-S-3: pH Measurement; IW-S-4: EC Measurement; IW-S-5: Calibration and measurement of samples using Supercal Modular calorimeter; IW-S-6: Toxicity characteristic leaching procedure – TCLP; IW-S-7: Field Protable X-ray Flourecence FTXRF; AS 4439.1-1999: Wastes, sediments and contaminated soils - Preparation of leachates - Preliminary assessment; AS 4439.3-1997: Wastes, sediments and contaminated soils - Preparation of leachates - Bottle leaching procedures.

Scope of Accreditation:

Materials/Products Tested	Types of Tests	Standard Specifications, Equipment/Techniques Used
1- Waste (Solid, sludge and liquid)	Quantification of metals by ICP-OES following ASLP, reagent water (Ag, Al, As, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Rb, P, Pb, Sb, Se, Sn, Sr, Ti, Tl, U, V, Zn)	IW-M-01 - Based on method 6010C
2- Solids & Liquids	Determination of VOC; BTEX by GC/MS Headspace	IW-M-02 - Based on method EPA 8260B; EPA 5030B(Liquid) and EPA 5035 (solid)
3- Potable water & leachates	pH at 25 °C	IW-M-03
4- Potable water & leachates	Electrical Conductivity at 25°C	IW-M-04

Disclaimer:

Analysis results relate only to the samples submitted. The laboratory has no control over the sampling protocol, the representivity of the samples and the manner in which the samples were collected, transported, stored, preserved or otherwise handled outside of the laboratory facility and therefore takes no responsibility whatsoever for these activities. Third parties using INTERWASTE results can verify the results by contacting the laboratory. INTERWASTE are not liable or responsible for the customer use and/or interpretation of test results. This certificate cannot be reproduced without the written consent of INTERWASTE laboratory.

Confidentiality Disclaimer:

All test results are confidential and are issued on a clear and accurate report of Analysis. Reports are submitted for exclusive use by our clients and/or our sales consultants. No reference to the work, the results, or to INSTERWASTE HUB LAB may be made in any form of advertising, news release or other public announcement without written authorization.

References

1.) Government Notice R.365, National Environmental Management: Waste Act (59/2008): National norms and standards for the assessment of waste for landfill disposal, Gazette No. 36

Sample Identification Number: IW2020-0467

Laboratory Analysis Report for Landfill Assessment			
Requested By:	Keelan Chetty	Waste Name:	MF3 0.5-1.5M Slime Stockpile Chrome Direct Reduction
Generator:	Samancor Chrome	Received Date:	12/06/2020
Lab Reference:	IW2020-0467	Analysis Date:	03/07/2020
No. of Samples:	1	Report Date:	28/07/2020
Sample Description:	Dark Grey coarse sample		

Table 1: Miscellaneous tests for sample: IW2020-0467 *

Parameter Tested	Unit	IW2020-0467
Sample Moisture Content	% (w/w)	34.74
Conductivity ^A	uS/cm	298
Initial Sample pH ^A	pH Units	9.12
Sample pH after HCl Addition	pH Units	NT
Leach Solution Applied	Solution Type	Water
Final Leach Solution pH	pH Units	NT
Physical State	NA	Solid
Water Miscibility	NA	Immiscible
Calorific Value	MJ/kg	NT
Additional Information	NA	Low Odour

* UTD = Unable to determine; NT = Not tested; A = SANAS accredited method; Where not specified, the methods are not accredited; Conductivity and pH measured by electronic conductivity and pH meter at ~22C (10% H2O extracts of solids). Moisture by mass loss on heating at ~103C for 30 mins.

Table 2: GC-MS total and leachable organics for sample: IW2020-0467 *

Contaminant Name	Detection Limit (mg/kg)	Concentration (mg/kg)	Theoretical Max. Leach Concentration (mg/L)
Nonane	2.000	BDL	BDL
Decane	2.000	BDL	BDL
Dodecane	2.000	BDL	BDL
Tetradecane	2.000	BDL	BDL
Hexadecane	2.000	BDL	BDL
Octadecane	2.000	BDL	BDL

T0736

Nonadecane	2.000	BDL	BDL
Eicosane	2.000	BDL	BDL
Docosane	2.000	BDL	BDL
Tetracosane	2.000	BDL	BDL
Hexacosane	2.000	BDL	BDL
Octacosane	2.000	BDL	BDL
Hentriacontane	2.000	BDL	BDL
n-Hexane	0.002	BDL	BDL
Heptane	0.002	BDL	BDL
Octane	0.002	BDL	BDL
Nonane2	0.002	BDL	BDL
Decane3	0.002	BDL	BDL
1,2-Dichloroethylene ^A	0.002	BDL	BDL
Chloroform ^A	0.002	BDL	BDL
1,1,1-Trichloroethane ^A	0.002	BDL	BDL
1,2-Dichloroethane ^A	0.002	BDL	BDL
1,1-Dichloropropene ^A	0.002	BDL	BDL
Benzene ^A	0.002	BDL	BDL
Carbon Tetrachloride ^A	0.002	BDL	BDL
Trichloroethylene ^A	0.002	BDL	BDL
Bromodichloromethane ^A	0.002	BDL	BDL
cis-1,3-Dichloropropene ^A	0.002	BDL	BDL
Toluene ^A	0.002	BDL	BDL
1,1,2 Trichloroethane ^A	0.002	BDL	BDL
1,3-Dichloropropane ^A	0.002	BDL	BDL
Dibromochloromethane ^A	0.002	BDL	BDL
1.2 Dibromoethane ^A	0.002	BDL	BDL
Tetrachloroethylene ^A	0.002	BDL	BDL
Chlorobenzene ^A	0.002	BDL	BDL
1,1,1,2-Tetrachloroethane ^A	0.002	BDL	BDL
Ethylbenzene ^A	0.002	BDL	BDL
o-Xylene ^A	0.002	BDL	BDL
Styrene ^A	0.002	BDL	BDL
1,1,2,2-Tetrachloroethane ^A	0.002	BDL	BDL

1,2,3-Trichloropropane ^A	0.002	BDL	BDL
Bromobenzene ^A	0.002	BDL	BDL
Propylbenzene ^A	0.002	BDL	BDL
4-Chlorotoluene ^A	0.002	BDL	BDL
1,2,3-Trimethylbenzene ^A	0.002	BDL	BDL
tert-Butylbenzene ^A	0.002	BDL	BDL
1,4-Dichlorobenzene ^A	0.002	BDL	BDL
sec-Butylbenzene ^A	0.002	BDL	BDL
1,2-Dichlorobenzene ^A	0.002	BDL	BDL
n-Butylbenzene ^A	0.002	BDL	BDL
Hexachloroethane ^A	0.002	BDL	BDL
1,2 Dibromo-3-chloropropane ^A	0.002	BDL	BDL
1,3,5-Trichlorobenzene ^A	0.002	BDL	BDL
Naphthalene ^A	0.002	BDL	BDL
Hexachlorobutadiene ^A	0.002	BDL	BDL
Phenol	2.000	BDL	BDL
Bis(2-chloroethyl) ether	2.000	BDL	BDL
2-Chlorophenol	2.000	BDL	BDL
1,4-Dichlorobenzene	2.000	BDL	BDL
1,2-Dichlorobenzene	2.000	BDL	BDL
2-Methylphenol (o-Cresol)	2.000	BDL	BDL
Bis(2-chloro-1-methylethyl)			
ether	2.000	BDL	BDL
4-Methylphenol (p-Cresol)	2.000	BDL	BDL
Hexachloroethane	2.000	BDL	BDL
Nitrobenzene	2.000	BDL	BDL
Isophorone	2.000	BDL	BDL
2-Nitrophenol	2.000	BDL	BDL
2,4-Dimethylphenol	2.000	BDL	BDL
Bis(2-chloroethoxy) methane	2.000	BDL	BDL
2,4-Dichlorophenol	2.000	BDL	BDL
1,3,5-Trichlorobenzene	2.000	BDL	BDL
Naphthalene	2.000	BDL	BDL
p-Chloroaniline	2.000	BDL	BDL
4-Chloro-3-methylphenol	2.000	BDL	BDL

2-Methylnaphthalene	2.000	BDL	BDL
Hexachlorocyclopentadiene	2.000	BDL	BDL
2,4,6-Trichlorophenol	2.000	BDL	BDL
2,4,5-Trichlorophenol	2.000	BDL	BDL
1-Chloronaphthalene	2.000	BDL	BDL
Diphenyl ether	2.000	BDL	BDL
2-Nitroaniline	2.000	BDL	BDL
Dimethyl phthalate	2.000	BDL	BDL
2-methyl-1,3-dinitro-Benzene	2.000	BDL	BDL
Acenaphthylene	2.000	BDL	BDL
Acenaphthene	2.000	BDL	BDL
Dibenzofuran	2.000	BDL	BDL
1-Methyl-2,4-dinitrobenzene	2.000	BDL	BDL
Diethylphthalate	2.000	BDL	BDL
1-chloro-4-phenoxybenzene	2.000	BDL	BDL
dimethyl-Cyanamide	2.000	BDL	BDL
Fluorene	2.000	BDL	BDL
3-Methyl-2-phenylpyridine	2.000	BDL	BDL
Azobenzene	2.000	BDL	BDL
1-Bromo-4-phenoxybenzene	2.000	BDL	BDL
Hexachlorobenzene	2.000	BDL	BDL
Pentachlorophenol	2.000	BDL	BDL
Phenanthrene	2.000	BDL	BDL
5H-Indeno[1,2-b]pyridine	2.000	BDL	BDL
Dibutyl phthalate	2.000	BDL	BDL
Fluoranthene	2.000	BDL	BDL
Benzyl butyl phthalate	2.000	BDL	BDL
Triphenylene	2.000	BDL	BDL
Benz[a]anthracene	2.000	BDL	BDL
Bis(2-ethylhexyl) phthalate	2.000	BDL	BDL
Di-n-octyl phthalate	2.000	BDL	BDL
Benzo[b]fluoranthene	2.000	BDL	BDL
Indenol[1,2,3-cd]pyrene	2.000	BDL	BDL
Benzo[b]triphenylene	2.000	BDL	BDL
Benzo[ghi]perylene	2.000	BDL	BDL

* UTD = Unable to determine; NT = Not tested; BDL = Element below indicated detection limit; A = SANAS accredited method; Where not specified, the methods are not accredited; All elements measured by GC-MS analysis

Contaminant Name	Total (mg/kg)	Leachable (mg/L)	Waste Type	
Inorganic Anions				
TDS	1937	96.85	Туре 4	
Organic Compounds				
Benzene	BDL	BDL	Туре 3	
Benzo(a)pyrene	NT	NT	UTD	
Carbon tetrachloride	BDL	BDL	Туре 3	
Chlorobenzene	BDL	BDL	Туре 3	
Chloroform	BDL	BDL	Туре 3	
2-Chlorophenol	BDL	BDL	Туре 3	
Di (2 ethylhexyl) phthalate	BDL	BDL	Туре 3	
1,2-Dichlorobenzene	BDL	BDL	Туре 3	
1,4-Dichlorobenzene	BDL	BDL	Туре 3	
1,2-Dichloroethane	BDL	BDL	Туре 3	
1,1-Dichloroethylene	NT	NT	UTD	
1,2-Dichloroethylene	NT	NT	UTD	
Dichloromethane	NT	NT	UTD	
2,4-Dichlorophenol	BDL	BDL	Туре 3	
2,4-Dinitrotoluene	NT	NT	UTD	
Ethylbenzene	BDL	BDL	Туре 3	
Formaldehyde	NT	NT	UTD	
Hexachlorobutadiene	BDL	BDL	Туре 3	
Methyl ethyl ketone	NT	NT	UTD	
MTBE (Methyl t-butyl ether)	NT	NT	UTD	
Nitrobenzene	BDL	BDL	Туре 3	
PAHs (total)	BDL	N/A	Туре 3	
Petroleum H/Cs, C6 to C9	BDL	N/A	Туре 3	
Petroleum H/Cs, C10 to C36	BDL	N/A	Туре 3	
Phenols (total, non-				
halogenated)	BDL	BDL	Туре 3	
Polychlorinated biphenyls	NT	NT	UTD	
Styrene	BDL	BDL	Туре 3	
1,1,1-Tetrachloroethane	BDL	BDL	Туре 3	
1,1,2-Tetrachloroethane	BDL	BDL	Туре 3	
Tetrachloroethylene	NT	NT	UTD	
Toluene	BDL	BDL	Туре 3	

Table 3: Landfill assessment for: IW2020-0467 *

Trichlorobenzenes (Total)	BDL	BDL	Туре 3
1,1,1-Trichloroethane	BDL	BDL	Туре 3
1,1,2-Trichloroethane	BDL	BDL	Туре 3
Trichlorophenol	NT	NT	UTD
2,4,6-Trichlorophenol	BDL	BDL	Туре 3
Vinyl Chloride	NT	NT	UTD
Xylene	BDL	BDL	Туре 3

*UTD = Unable to determine; NT = Not tested; BDL = Element below indicated detection limit;

Determining the landfill site class for disposal:

The assigned waste type determines the class of landfill site where a particular waste stream may be disposed. A waste type of one (Type 1) is assigned to waste that presents the most risk to the environment when disposed of at a landfill site and therefore requires disposal at a site with stringent engineering controls corresponding to a so called "Class A" site. Type four (Type 4) waste presents a low risk to the environment when disposed of to a landfill site and therefore may be disposed of at a less stringently engineered, "Class D" site. Type zero waste (Type 0) may not be disposed of to any landfill site in South Africa without prior treatment. The *National Waste Classification and Management Regulations* detail specific requirements surrounding the classification and assessment of waste for disposal to landfill (See references). Note that a GHS (SANS10234) compliant classification and safety data sheet is required before a final waste management decision should be taken and should be read in conjunction with this assessment.

Standard Operational Procedure:

Identification of analysis methods:

IW-S-1: Determination of Metals in Liquids and solids using ICP-OES Optima 8300; IW-S-2: Determination of the VOC content of liquid and solids using GC6850, MS5976C; IW-S-3: pH Measurement; IW-S-4: EC Measurement; IW-S-5: Calibration and measurement of samples using Supercal Modular calorimeter; IW-S-6: Toxicity characteristic leaching procedure – TCLP; IW-S-7: Field Protable X-ray Flourecence FTXRF; AS 4439.1-1999: Wastes, sediments and contaminated soils - Preparation of leachates - Preliminary assessment; AS 4439.3-1997: Wastes, sediments and contaminated soils - Preparation of leachates - Bottle leaching procedures.

Scope of Accreditation:

Materials/Products Tested	Types of Tests	Standard Specifications, Equipment/Techniques Used
1- Waste (Solid, sludge and liquid)	Quantification of metals by ICP-OES following ASLP, reagent water (Ag, Al, As, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Rb, P, Pb, Sb, Se, Sn, Sr, Ti, Tl, U, V, Zn)	IW-M-01 - Based on method 6010C
2- Solids & Liquids	Determination of VOC; BTEX by GC/MS Headspace	IW-M-02 - Based on method EPA 8260B; EPA 5030B(Liquid) and EPA 5035 (solid)
3- Potable water & leachates	pH at 25 °C	IW-M-03
4- Potable water & leachates	Electrical Conductivity at 25°C	IW-M-04

Disclaimer:

Analysis results relate only to the samples submitted. The laboratory has no control over the sampling protocol, the representivity of the samples and the manner in which the samples were collected, transported, stored, preserved or otherwise handled outside of the laboratory facility and therefore takes no responsibility whatsoever for these activities. Third parties using INTERWASTE results can verify the results by contacting the laboratory. INTERWASTE are not liable or responsible for the customer use and/or interpretation of test results. This certificate cannot be reproduced without the written consent of INTERWASTE laboratory.

Confidentiality Disclaimer:

All test results are confidential and are issued on a clear and accurate report of Analysis. Reports are submitted for exclusive use by our clients and/or our sales consultants. No reference to the work, the results, or to INSTERWASTE HUB LAB may be made in any form of advertising, news release or other public announcement without written authorization.

References

1.) Government Notice R.365, National Environmental Management: Waste Act (59/2008): National norms and standards for the assessment of waste for landfill disposal, Gazette No. 36

Laboratory Analysis Report for Landfill Assessment			
Requested By:	Keelan Chetty	Waste Name:	MF1 0-1M Slime Stockpile Chrome Direct Reduction
Generator:	Samancor Chrome	Received Date:	12/06/2020
Lab Reference:	IW2020-0466	Analysis Date:	03/07/2020
No. of Samples:	1	Report Date:	28/07/2020
Sample Description:	Black Slime		

Table 1: Miscellaneous tests for sample: IW2020-0466 *

Parameter Tested	Unit	IW2020-0466
Sample Moisture Content	% (w/w)	33.56
Conductivity ^A	uS/cm	117.2
Initial Sample pH ^A	pH Units	9.23
Sample pH after HCl Addition	pH Units	NT
Leach Solution Applied	Solution Type	Water
Final Leach Solution pH	pH Units	NT
Physical State	NA	Solid
Water Miscibility	NA	Immiscible
Calorific Value	MJ/kg	NT
Additional Information	NA	Low Odour

* UTD = Unable to determine; NT = Not tested; A = SANAS accredited method; Where not specified, the methods are not accredited; Conductivity and pH measured by electronic conductivity and pH meter at ~22C (10% H2O extracts of solids). Moisture by mass loss on heating at ~103C for 30 mins.

Table 2: GC-MS total and leachable organics for sample: IW2020-0466 *

Contaminant Name	Detection Limit (mg/kg)	Concentration (mg/kg)	Theoretical Max. Leach Concentration (mg/L)
Nonane	2.000	BDL	BDL
Decane	2.000	BDL	BDL
Dodecane	2.000	BDL	BDL
Tetradecane	2.000	BDL	BDL
Hexadecane	2.000	BDL	BDL
Octadecane	2.000	BDL	BDL

Nonadecane	2.000	BDL	BDL
Eicosane	2.000	BDL	BDL
Docosane	2.000	BDL	BDL
Tetracosane	2.000	BDL	BDL
Hexacosane	2.000	BDL	BDL
Octacosane	2.000	BDL	BDL
Hentriacontane	2.000	BDL	BDL
n-Hexane	0.002	BDL	BDL
Heptane	0.002	BDL	BDL
Octane	0.002	BDL	BDL
Nonane2	0.002	BDL	BDL
Decane3	0.002	BDL	BDL
1,2-Dichloroethylene ^A	0.002	BDL	BDL
Chloroform ^A	0.002	BDL	BDL
1,1,1-Trichloroethane ^A	0.002	BDL	BDL
1,2-Dichloroethane ^A	0.002	BDL	BDL
1,1-Dichloropropene ^A	0.002	BDL	BDL
Benzene ^A	0.002	BDL	BDL
Carbon Tetrachloride ^A	0.002	BDL	BDL
Trichloroethylene ^A	0.002	BDL	BDL
Bromodichloromethane ^A	0.002	BDL	BDL
cis-1,3-Dichloropropene ^A	0.002	BDL	BDL
Toluene ^A	0.002	BDL	BDL
1,1,2 Trichloroethane ^A	0.002	BDL	BDL
1,3-Dichloropropane ^A	0.002	BDL	BDL
Dibromochloromethane ^A	0.002	BDL	BDL
1.2 Dibromoethane ^A	0.002	BDL	BDL
Tetrachloroethylene ^A	0.002	BDL	BDL
Chlorobenzene ^A	0.002	BDL	BDL
1,1,1,2-Tetrachloroethane ^A	0.002	BDL	BDL
Ethylbenzene ^A	0.002	BDL	BDL
o-Xylene ^A	0.002	BDL	BDL
Styrene ^A	0.002	BDL	BDL
1,1,2,2-Tetrachloroethane ^A	0.002	BDL	BDL

1,2,3-Trichloropropane ^A	0.002	BDL	BDL
Bromobenzene ^A	0.002	BDL	BDL
Propylbenzene ^A	0.002	BDL	BDL
4-Chlorotoluene ^A	0.002	BDL	BDL
1,2,3-Trimethylbenzene ^A	0.002	BDL	BDL
tert-Butylbenzene ^A	0.002	BDL	BDL
1,4-Dichlorobenzene ^A	0.002	BDL	BDL
sec-Butylbenzene ^A	0.002	BDL	BDL
1,2-Dichlorobenzene ^A	0.002	BDL	BDL
n-Butylbenzene ^A	0.002	BDL	BDL
Hexachloroethane ^A	0.002	BDL	BDL
1,2 Dibromo-3-chloropropane ^A	0.002	BDL	BDL
1,3,5-Trichlorobenzene ^A	0.002	BDL	BDL
Naphthalene ^A	0.002	BDL	BDL
Hexachlorobutadiene ^A	0.002	BDL	BDL
Phenol	2.000	BDL	BDL
Bis(2-chloroethyl) ether	2.000	BDL	BDL
2-Chlorophenol	2.000	BDL	BDL
1,4-Dichlorobenzene	2.000	BDL	BDL
1,2-Dichlorobenzene	2.000	BDL	BDL
2-Methylphenol (o-Cresol)	2.000	BDL	BDL
Bis(2-chloro-1-methylethyl) ether	2.000	BDL	BDL
4-Methylphenol (p-Cresol)	2.000	BDL	BDL
Hexachloroethane	2.000	BDL	BDL
Nitrobenzene	2.000	BDL	BDL
Isophorone	2.000	BDL	BDL
2-Nitrophenol	2.000	BDL	BDL
2,4-Dimethylphenol	2.000	BDL	BDL
Bis(2-chloroethoxy) methane	2.000	BDL	BDL
2,4-Dichlorophenol	2.000	BDL	BDL
1,3,5-Trichlorobenzene	2.000	BDL	BDL
Naphthalene	2.000	BDL	BDL
p-Chloroaniline	2.000	BDL	BDL
4-Chloro-3-methylphenol	2.000	BDL	BDL

2-Methylnaphthalene	2.000	BDL	BDL
Hexachlorocyclopentadiene	2.000	BDL	BDL
2,4,6-Trichlorophenol	2.000	BDL	BDL
2,4,5-Trichlorophenol	2.000	BDL	BDL
1-Chloronaphthalene	2.000	BDL	BDL
Diphenyl ether	2.000	BDL	BDL
2-Nitroaniline	2.000	BDL	BDL
Dimethyl phthalate	2.000	BDL	BDL
2-methyl-1,3-dinitro-Benzene	2.000	BDL	BDL
Acenaphthylene	2.000	BDL	BDL
Acenaphthene	2.000	BDL	BDL
Dibenzofuran	2.000	BDL	BDL
1-Methyl-2,4-dinitrobenzene	2.000	BDL	BDL
Diethylphthalate	2.000	BDL	BDL
1-chloro-4-phenoxybenzene	2.000	BDL	BDL
dimethyl-Cyanamide	2.000	BDL	BDL
Fluorene	2.000	BDL	BDL
3-Methyl-2-phenylpyridine	2.000	BDL	BDL
Azobenzene	2.000	BDL	BDL
1-Bromo-4-phenoxybenzene	2.000	BDL	BDL
Hexachlorobenzene	2.000	BDL	BDL
Pentachlorophenol	2.000	BDL	BDL
Phenanthrene	2.000	BDL	BDL
5H-Indeno[1,2-b]pyridine	2.000	BDL	BDL
Dibutyl phthalate	2.000	BDL	BDL
Fluoranthene	2.000	BDL	BDL
Benzyl butyl phthalate	2.000	BDL	BDL
Triphenylene	2.000	BDL	BDL
Benz[a]anthracene	2.000	BDL	BDL
Bis(2-ethylhexyl) phthalate	2.000	BDL	BDL
Di-n-octyl phthalate	2.000	BDL	BDL
Benzo[b]fluoranthene	2.000	BDL	BDL
Indenol[1,2,3-cd]pyrene	2.000	BDL	BDL
Benzo[b]triphenylene	2.000	BDL	BDL
Benzo[ghi]perylene	2.000	BDL	BDL

Table 3: Landfill assessment for: IW2020-0466 *				
Contaminant Name	Total (mg/kg)	Leachable (mg/L)	Waste Type	
Inorganic Anions				
TDS	761.8	38.09	Туре 4	
	Organic Comp	ounds		
Benzene	BDL	BDL	Туре 3	
Benzo(a)pyrene	NT	NT	UTD	
Carbon tetrachloride	BDL	BDL	Туре 3	
Chlorobenzene	BDL	BDL	Туре 3	
Chloroform	BDL	BDL	Туре 3	
2-Chlorophenol	BDL	BDL	Туре 3	
Di (2 ethylhexyl) phthalate	BDL	BDL	Туре 3	
1,2-Dichlorobenzene	BDL	BDL	Туре 3	
1,4-Dichlorobenzene	BDL	BDL	Туре 3	
1,2-Dichloroethane	BDL	BDL	Туре 3	
1,1-Dichloroethylene	NT	NT	UTD	
1,2-Dichloroethylene	NT	NT	UTD	
Dichloromethane	NT	NT	UTD	
2,4-Dichlorophenol	BDL	BDL	Туре 3	
2,4-Dinitrotoluene	NT	NT	UTD	
Ethylbenzene	BDL	BDL	Туре 3	
Formaldehyde	NT	NT	UTD	
Hexachlorobutadiene	BDL	BDL	Туре 3	
Methyl ethyl ketone	NT	NT	UTD	
MTBE (Methyl t-butyl ether)	NT	NT	UTD	
Nitrobenzene	BDL	BDL	Туре 3	
PAHs (total)	BDL	N/A	Туре 3	
Petroleum H/Cs, C6 to C9	BDL	N/A	Туре 3	
Petroleum H/Cs, C10 to C36	BDL	N/A	Туре 3	
Phenols (total, non-				
halogenated)	BDL	BDL	Туре 3	
Polychlorinated biphenyls	NT	NT	UTD	
Styrene	BDL	BDL	Туре 3	
1,1,1-Tetrachloroethane	BDL	BDL	Туре 3	
1,1,2-Tetrachloroethane	BDL	BDL	Туре 3	
Tetrachloroethylene	NT	NT	UTD	
Toluene	BDL	BDL	Туре 3	

Table 3: Landfill assessment for: IW2020-0466 *

Trichlorobenzenes (Total)	BDL	BDL	Туре 3
1,1,1-Trichloroethane	BDL	BDL	Туре 3
1,1,2-Trichloroethane	BDL	BDL	Туре 3
Trichlorophenol	NT	NT	UTD
2,4,6-Trichlorophenol	BDL	BDL	Туре 3
Vinyl Chloride	NT	NT	UTD
Xylene	BDL	BDL	Туре 3

Determining the landfill site class for disposal:

The assigned waste type determines the class of landfill site where a particular waste stream may be disposed. A waste type of one (Type 1) is assigned to waste that presents the most risk to the environment when disposed of at a landfill site and therefore requires disposal at a site with stringent engineering controls corresponding to a so called "Class A" site. Type four (Type 4) waste presents a low risk to the environment when disposed of to a landfill site and therefore may be disposed of at a less stringently engineered, "Class D" site. Type zero waste (Type 0) may not be disposed of to any landfill site in South Africa without prior treatment. The *National Waste Classification and Management Regulations* detail specific requirements surrounding the classification and assessment of waste for disposal to landfill (See references). Note that a GHS (SANS10234) compliant classification and safety data sheet is required before a final waste management decision should be taken and should be read in conjunction with this assessment.

Standard Operational Procedure:

Identification of analysis methods:

Materials/Products Tested	Types of Tests	Standard Specifications, Equipment/Techniques Used
1- Waste (Solid, sludge and liquid)	Quantification of metals by ICP-OES following ASLP, reagent water (Ag, Al, As, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Rb, P, Pb, Sb, Se, Sn, Sr, Ti, Tl, U, V, Zn)	IW-M-01 - Based on method 6010C
2- Solids & Liquids	Determination of VOC; BTEX by GC/MS Headspace	IW-M-02 - Based on method EPA 8260B; EPA 5030B(Liquid) and EPA 5035 (solid)
3- Potable water & leachates	pH at 25 °C	IW-M-03
4- Potable water & leachates	Electrical Conductivity at 25°C	IW-M-04

Disclaimer:

Analysis results relate only to the samples submitted. The laboratory has no control over the sampling protocol, the representivity of the samples and the manner in which the samples were collected, transported, stored, preserved or otherwise handled outside of the laboratory facility and therefore takes no responsibility whatsoever for these activities. Third parties using INTERWASTE results can verify the results by contacting the laboratory. INTERWASTE are not liable or responsible for the customer use and/or interpretation of test results. This certificate cannot be reproduced without the written consent of INTERWASTE laboratory.

Confidentiality Disclaimer:

All test results are confidential and are issued on a clear and accurate report of Analysis. Reports are submitted for exclusive use by our clients and/or our sales consultants. No reference to the work, the results, or to INSTERWASTE HUB LAB may be made in any form of advertising, news release or other public announcement without written authorization.

References

Laboratory Analysis Report for Landfill Assessment			
Requested By:	Keelan Chetty	Waste Name:	MF2 2-2.5M Slime Stockpile Chrome Direct Reduction
Generator:	Samancor Chrome	Received Date:	12/06/2020
Lab Reference:	IW2020-0465	Analysis Date:	03/07/2020
No. of Samples:	1	Report Date:	28/07/2020
Sample Description:	Grey semi wet solid		

Table 1: Miscellaneous tests for sample: IW2020-0465 *

Parameter Tested	Unit	IW2020-0465
Sample Moisture Content	% (w/w)	34.68
Conductivity ^A	uS/cm	1068
Initial Sample pH ^A	pH Units	8.8
Sample pH after HCl Addition	pH Units	NT
Leach Solution Applied	Solution Type	Water
Final Leach Solution pH	pH Units	NT
Physical State	NA	Solid
Water Miscibility	NA	Immiscible
Calorific Value	MJ/kg	NT
Additional Information	NA	Low Odour

* UTD = Unable to determine; NT = Not tested; A = SANAS accredited method; Where not specified, the methods are not accredited; Conductivity and pH measured by electronic conductivity and pH meter at ~22C (10% H2O extracts of solids). Moisture by mass loss on heating at ~103C for 30 mins.

Table 2: GC-MS total and leachable organics for sample: IW2020-0465 *

Contaminant Name	Detection Limit (mg/kg)	Concentration (mg/kg)	Theoretical Max. Leach Concentration (mg/L)
Nonane	2.000	BDL	BDL
Decane	2.000	BDL	BDL
Dodecane	2.000	BDL	BDL
Tetradecane	2.000	BDL	BDL
Hexadecane	2.000	BDL	BDL
Octadecane	2.000	BDL	BDL

T0736

Nonadecane	2.000	BDL	BDL
Eicosane	2.000	BDL	BDL
Docosane	2.000	BDL	BDL
Tetracosane	2.000	BDL	BDL
Hexacosane	2.000	BDL	BDL
Octacosane	2.000	BDL	BDL
Hentriacontane	2.000	BDL	BDL
n-Hexane	0.002	BDL	BDL
Heptane	0.002	BDL	BDL
Octane	0.002	BDL	BDL
Nonane2	0.002	BDL	BDL
Decane3	0.002	BDL	BDL
1,2-Dichloroethylene ^A	0.002	BDL	BDL
Chloroform ^A	0.002	BDL	BDL
1,1,1-Trichloroethane ^A	0.002	BDL	BDL
1,2-Dichloroethane ^A	0.002	BDL	BDL
1,1-Dichloropropene ^A	0.002	BDL	BDL
Benzene ^A	0.002	BDL	BDL
Carbon Tetrachloride ^A	0.002	BDL	BDL
Trichloroethylene ^A	0.002	BDL	BDL
Bromodichloromethane ^A	0.002	BDL	BDL
cis-1,3-Dichloropropene ^A	0.002	BDL	BDL
Toluene ^A	0.002	BDL	BDL
1,1,2 Trichloroethane ^A	0.002	BDL	BDL
1,3-Dichloropropane ^A	0.002	BDL	BDL
Dibromochloromethane ^A	0.002	BDL	BDL
1.2 Dibromoethane ^A	0.002	BDL	BDL
Tetrachloroethylene ^A	0.002	BDL	BDL
Chlorobenzene ^A	0.002	BDL	BDL
1,1,1,2-Tetrachloroethane ^A	0.002	BDL	BDL
Ethylbenzene ^A	0.002	BDL	BDL
o-Xylene ^A	0.002	BDL	BDL
Styrene ^A	0.002	BDL	BDL
1,1,2,2-Tetrachloroethane ^A	0.002	BDL	BDL

1,2,3-Trichloropropane ^A	0.002	BDL	BDL
Bromobenzene ^A	0.002	BDL	BDL
Propylbenzene ^A	0.002	BDL	BDL
4-Chlorotoluene ^A	0.002	BDL	BDL
1,2,3-Trimethylbenzene ^A	0.002	BDL	BDL
tert-Butylbenzene ^A	0.002	BDL	BDL
1,4-Dichlorobenzene ^A	0.002	BDL	BDL
sec-Butylbenzene	0.002	BDL	BDL
1,2-Dichlorobenzene ^A	0.002	BDL	BDL
n-Butylbenzene ^A	0.002	BDL	BDL
Hexachloroethane ^A	0.002	BDL	BDL
1,2 Dibromo-3-chloropropane ^A	0.002	BDL	BDL
1,3,5-Trichlorobenzene ^A	0.002	BDL	BDL
Naphthalene ^A	0.002	BDL	BDL
Hexachlorobutadiene ^A	0.002	BDL	BDL
Phenol	2.000	BDL	BDL
Bis(2-chloroethyl) ether	2.000	BDL	BDL
2-Chlorophenol	2.000	BDL	BDL
1,4-Dichlorobenzene	2.000	BDL	BDL
1,2-Dichlorobenzene	2.000	BDL	BDL
2-Methylphenol (o-Cresol)	2.000	BDL	BDL
Bis(2-chloro-1-methylethyl)			
ether	2.000	BDL	BDL
4-Methylphenol (p-Cresol)	2.000	BDL	BDL
Hexachloroethane	2.000	BDL	BDL
Nitrobenzene	2.000	BDL	BDL
Isophorone	2.000	BDL	BDL
2-Nitrophenol	2.000	BDL	BDL
2,4-Dimethylphenol	2.000	BDL	BDL
Bis(2-chloroethoxy) methane	2.000	BDL	BDL
2,4-Dichlorophenol	2.000	BDL	BDL
1,3,5-Trichlorobenzene	2.000	BDL	BDL
Naphthalene	2.000	BDL	BDL
p-Chloroaniline	2.000	BDL	BDL
4-Chloro-3-methylphenol	2.000	BDL	BDL

2-Methylnaphthalene	2.000	BDL	BDL
Hexachlorocyclopentadiene	2.000	BDL	BDL
2,4,6-Trichlorophenol	2.000	BDL	BDL
2,4,5-Trichlorophenol	2.000	BDL	BDL
1-Chloronaphthalene	2.000	BDL	BDL
Diphenyl ether	2.000	BDL	BDL
2-Nitroaniline	2.000	BDL	BDL
Dimethyl phthalate	2.000	BDL	BDL
2-methyl-1,3-dinitro-Benzene	2.000	BDL	BDL
Acenaphthylene	2.000	BDL	BDL
Acenaphthene	2.000	BDL	BDL
Dibenzofuran	2.000	BDL	BDL
1-Methyl-2,4-dinitrobenzene	2.000	BDL	BDL
Diethylphthalate	2.000	BDL	BDL
1-chloro-4-phenoxybenzene	2.000	BDL	BDL
dimethyl-Cyanamide	2.000	BDL	BDL
Fluorene	2.000	BDL	BDL
3-Methyl-2-phenylpyridine	2.000	BDL	BDL
Azobenzene	2.000	BDL	BDL
1-Bromo-4-phenoxybenzene	2.000	BDL	BDL
Hexachlorobenzene	2.000	BDL	BDL
Pentachlorophenol	2.000	BDL	BDL
Phenanthrene	2.000	BDL	BDL
5H-Indeno[1,2-b]pyridine	2.000	BDL	BDL
Dibutyl phthalate	2.000	BDL	BDL
Fluoranthene	2.000	BDL	BDL
Benzyl butyl phthalate	2.000	BDL	BDL
Triphenylene	2.000	BDL	BDL
Benz[a]anthracene	2.000	BDL	BDL
Bis(2-ethylhexyl) phthalate	2.000	BDL	BDL
Di-n-octyl phthalate	2.000	BDL	BDL
Benzo[b]fluoranthene	2.000	BDL	BDL
Indenol[1,2,3-cd]pyrene	2.000	BDL	BDL
Benzo[b]triphenylene	2.000	BDL	BDL
Benzo[ghi]perylene			

Contaminant Name	Total (mg/kg)	Leachable (mg/L)	Waste Type
		c Anions	
TDS	6942	347.1	Type 4
	Organic Co	ompounds	
Benzene	BDL	BDL	Туре 3
Benzo(a)pyrene	NT	NT	UTD
Carbon tetrachloride	BDL	BDL	Туре 3
Chlorobenzene	BDL	BDL	Туре 3
Chloroform	BDL	BDL	Туре 3
2-Chlorophenol	BDL	BDL	Туре 3
Di (2 ethylhexyl) phthalate	BDL	BDL	Туре 3
1,2-Dichlorobenzene	BDL	BDL	Туре 3
1,4-Dichlorobenzene	BDL	BDL	Туре 3
1,2-Dichloroethane	BDL	BDL	Туре 3
1,1-Dichloroethylene	NT	NT	UTD
1,2-Dichloroethylene	NT	NT	UTD
Dichloromethane	NT	NT	UTD
2,4-Dichlorophenol	BDL	BDL	Туре 3
2,4-Dinitrotoluene	NT	NT	UTD
Ethylbenzene	BDL	BDL	Туре 3
Formaldehyde	NT	NT	UTD
Hexachlorobutadiene	BDL	BDL	Туре 3
Methyl ethyl ketone	NT	NT	UTD
MTBE (Methyl t-butyl ether)	NT	NT	UTD
Nitrobenzene	BDL	BDL	Туре 3
PAHs (total)	BDL	N/A	Туре 3
Petroleum H/Cs, C6 to C9	BDL	N/A	Туре 3
Petroleum H/Cs, C10 to C36	BDL	N/A	Туре 3
Phenols (total, non-			
halogenated)	BDL	BDL	Туре 3
Polychlorinated biphenyls	NT	NT	UTD
Styrene	BDL	BDL	Туре 3
1,1,1-Tetrachloroethane	BDL	BDL	Туре 3
1,1,2-Tetrachloroethane	BDL	BDL	Туре 3
Tetrachloroethylene	NT	NT	UTD
Toluene	BDL	BDL	Туре 3

Table 3: Landfill assessment for: IW2020-0465 *

Trichlorobenzenes (Total)	BDL	BDL	Туре 3
1,1,1-Trichloroethane	BDL	BDL	Туре 3
1,1,2-Trichloroethane	BDL	BDL	Туре 3
Trichlorophenol	NT	NT	UTD
2,4,6-Trichlorophenol	BDL	BDL	Туре 3
Vinyl Chloride	NT	NT	UTD
Xylene	BDL	BDL	Туре 3

Determining the landfill site class for disposal:

The assigned waste type determines the class of landfill site where a particular waste stream may be disposed. A waste type of one (Type 1) is assigned to waste that presents the most risk to the environment when disposed of at a landfill site and therefore requires disposal at a site with stringent engineering controls corresponding to a so called "Class A" site. Type four (Type 4) waste presents a low risk to the environment when disposed of to a landfill site and therefore may be disposed of at a less stringently engineered, "Class D" site. Type zero waste (Type 0) may not be disposed of to any landfill site in South Africa without prior treatment. The *National Waste Classification and Management Regulations* detail specific requirements surrounding the classification and assessment of waste for disposal to landfill (See references). Note that a GHS (SANS10234) compliant classification and safety data sheet is required before a final waste management decision should be taken and should be read in conjunction with this assessment.

Standard Operational Procedure:

Identification of analysis methods:

Materials/Products Tested	Types of Tests	Standard Specifications, Equipment/Techniques Used
1- Waste (Solid, sludge and liquid)	Quantification of metals by ICP-OES following ASLP, reagent water (Ag, Al, As, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Rb, P, Pb, Sb, Se, Sn, Sr, Ti, Tl, U, V, Zn)	IW-M-01 - Based on method 6010C
2- Solids & Liquids	Determination of VOC; BTEX by GC/MS Headspace	IW-M-02 - Based on method EPA 8260B; EPA 5030B(Liquid) and EPA 5035 (solid)
3- Potable water & leachates	pH at 25 °C	IW-M-03
4- Potable water & leachates	Electrical Conductivity at 25°C	IW-M-04

Disclaimer:

Analysis results relate only to the samples submitted. The laboratory has no control over the sampling protocol, the representivity of the samples and the manner in which the samples were collected, transported, stored, preserved or otherwise handled outside of the laboratory facility and therefore takes no responsibility whatsoever for these activities. Third parties using INTERWASTE results can verify the results by contacting the laboratory. INTERWASTE are not liable or responsible for the customer use and/or interpretation of test results. This certificate cannot be reproduced without the written consent of INTERWASTE laboratory.

Confidentiality Disclaimer:

All test results are confidential and are issued on a clear and accurate report of Analysis. Reports are submitted for exclusive use by our clients and/or our sales consultants. No reference to the work, the results, or to INSTERWASTE HUB LAB may be made in any form of advertising, news release or other public announcement without written authorization.

References

Laboratory Analysis Report for Landfill Assessment			
Requested By:	Keelan Chetty	Waste Name:	MF4 0.5-1.5M Slime Stockpile Chrome Direct Reduction
Generator:	Samancor Chrome	Received Date:	12/06/2020
Lab Reference:	IW2020-0464	Analysis Date:	03/07/2020
No. of Samples:	1	Report Date:	28/07/2020
Sample Description:	Grey Gravel Slime		

Table 1: Miscellaneous tests for sample: IW2020-0464 *

Parameter Tested	Unit	IW2020-0464
Sample Moisture Content	% (w/w)	39.26
Conductivity ^A	uS/cm	1144
Initial Sample pH ^A	pH Units	9.54
Sample pH after HCl Addition	pH Units	NT
Leach Solution Applied	Solution Type	Water
Final Leach Solution pH	pH Units	NT
Physical State	NA	Solid
Water Miscibility	NA	Immiscible
Calorific Value	MJ/kg	NT
Additional Information	NA	Low Odour

* UTD = Unable to determine; NT = Not tested; A = SANAS accredited method; Where not specified, the methods are not accredited; Conductivity and pH measured by electronic conductivity and pH meter at ~22C (10% H2O extracts of solids). Moisture by mass loss on heating at ~103C for 30 mins.

Table 2: GC-MS total and leachable organics for sample: IW2020-0464 *

Contaminant Name	Detection Limit (mg/kg)	Concentration (mg/kg)	Theoretical Max. Leach Concentration (mg/L)
Nonane	2.000	BDL	BDL
Decane	2.000	BDL	BDL
Dodecane	2.000	BDL	BDL
Tetradecane	2.000	BDL	BDL
Hexadecane	2.000	BDL	BDL
Octadecane	2.000	BDL	BDL

Nonadecane	2.000	BDL	BDL
Eicosane	2.000	BDL	BDL
Docosane	2.000	BDL	BDL
Tetracosane	2.000	BDL	BDL
Hexacosane	2.000	BDL	BDL
Octacosane	2.000	BDL	BDL
Hentriacontane	2.000	BDL	BDL
n-Hexane	0.002	BDL	BDL
Heptane	0.002	BDL	BDL
Octane	0.002	BDL	BDL
Nonane2	0.002	BDL	BDL
Decane3	0.002	BDL	BDL
1,2-Dichloroethylene ^A	0.002	BDL	BDL
Chloroform ^A	0.002	BDL	BDL
1,1,1-Trichloroethane ^A	0.002	BDL	BDL
1,2-Dichloroethane ^A	0.002	BDL	BDL
1,1-Dichloropropene ^A	0.002	BDL	BDL
Benzene ^A	0.002	BDL	BDL
Carbon Tetrachloride ^A	0.002	BDL	BDL
Trichloroethylene ^A	0.002	BDL	BDL
Bromodichloromethane ^A	0.002	BDL	BDL
cis-1,3-Dichloropropene ^A	0.002	BDL	BDL
Toluene ^A	0.002	BDL	BDL
1,1,2 Trichloroethane ^A	0.002	BDL	BDL
1,3-Dichloropropane ^A	0.002	BDL	BDL
Dibromochloromethane ^A	0.002	BDL	BDL
1.2 Dibromoethane ^A	0.002	BDL	BDL
Tetrachloroethylene ^A	0.002	BDL	BDL
Chlorobenzene ^A	0.002	BDL	BDL
1,1,1,2-Tetrachloroethane ^A	0.002	BDL	BDL
Ethylbenzene ^A	0.002	BDL	BDL
o-Xylene ^A	0.002	BDL	BDL
Styrene ^A	0.002	BDL	BDL
1,1,2,2-Tetrachloroethane ^A	0.002	BDL	BDL

1,2,3-Trichloropropane ^A	0.002	BDL	BDL
Bromobenzene ^A	0.002	BDL	BDL
Propylbenzene ^A	0.002	BDL	BDL
4-Chlorotoluene ^A	0.002	BDL	BDL
1,2,3-Trimethylbenzene ^A	0.002	BDL	BDL
tert-Butylbenzene ^A	0.002	BDL	BDL
1,4-Dichlorobenzene ^A	0.002	BDL	BDL
sec-Butylbenzene	0.002	BDL	BDL
1,2-Dichlorobenzene ^A	0.002	BDL	BDL
n-Butylbenzene ^A	0.002	BDL	BDL
Hexachloroethane ^A	0.002	BDL	BDL
1,2 Dibromo-3-chloropropane ^A	0.002	BDL	BDL
1,3,5-Trichlorobenzene ^A	0.002	BDL	BDL
Naphthalene ^A	0.002	BDL	BDL
Hexachlorobutadiene ^A	0.002	BDL	BDL
Phenol	2.000	BDL	BDL
Bis(2-chloroethyl) ether	2.000	BDL	BDL
2-Chlorophenol	2.000	BDL	BDL
1,4-Dichlorobenzene	2.000	BDL	BDL
1,2-Dichlorobenzene	2.000	BDL	BDL
2-Methylphenol (o-Cresol)	2.000	BDL	BDL
Bis(2-chloro-1-methylethyl) ether	2.000	BDL	BDL
4-Methylphenol (p-Cresol)	2.000	BDL	BDL
Hexachloroethane	2.000	BDL	BDL
Nitrobenzene	2.000	BDL	BDL
Isophorone	2.000	BDL	BDL
2-Nitrophenol	2.000	BDL	BDL
2,4-Dimethylphenol	2.000	BDL	BDL
Bis(2-chloroethoxy) methane	2.000	BDL	BDL
2,4-Dichlorophenol	2.000	BDL	BDL
1,3,5-Trichlorobenzene	2.000	BDL	BDL
Naphthalene	2.000	BDL	BDL
p-Chloroaniline	2.000	BDL	BDL
4-Chloro-3-methylphenol	2.000	BDL	BDL

2-Methylnaphthalene	2.000	BDL	BDL
Hexachlorocyclopentadiene	2.000	BDL	BDL
2,4,6-Trichlorophenol	2.000	BDL	BDL
2,4,5-Trichlorophenol	2.000	BDL	BDL
1-Chloronaphthalene	2.000	BDL	BDL
Diphenyl ether	2.000	BDL	BDL
2-Nitroaniline	2.000	BDL	BDL
Dimethyl phthalate	2.000	BDL	BDL
2-methyl-1,3-dinitro-Benzene	2.000	BDL	BDL
Acenaphthylene	2.000	BDL	BDL
Acenaphthene	2.000	BDL	BDL
Dibenzofuran	2.000	BDL	BDL
1-Methyl-2,4-dinitrobenzene	2.000	BDL	BDL
Diethylphthalate	2.000	BDL	BDL
1-chloro-4-phenoxybenzene	2.000	BDL	BDL
dimethyl-Cyanamide	2.000	BDL	BDL
Fluorene	2.000	BDL	BDL
3-Methyl-2-phenylpyridine	2.000	BDL	BDL
Azobenzene	2.000	BDL	BDL
1-Bromo-4-phenoxybenzene	2.000	BDL	BDL
Hexachlorobenzene	2.000	BDL	BDL
Pentachlorophenol	2.000	BDL	BDL
Phenanthrene	2.000	BDL	BDL
5H-Indeno[1,2-b]pyridine	2.000	BDL	BDL
Dibutyl phthalate	2.000	BDL	BDL
Fluoranthene	2.000	BDL	BDL
Benzyl butyl phthalate	2.000	BDL	BDL
Triphenylene	2.000	BDL	BDL
Benz[a]anthracene	2.000	BDL	BDL
Bis(2-ethylhexyl) phthalate	2.000	BDL	BDL
Di-n-octyl phthalate	2.000	BDL	BDL
Benzo[b]fluoranthene	2.000	BDL	BDL
Indenol[1,2,3-cd]pyrene	2.000	BDL	BDL
Benzo[b]triphenylene	2.000	BDL	BDL
Benzo[ghi]perylene	2.000	BDL	BDL

Table 3: Landfill assessme	nt for: IW2020-0464 *

Contaminant Name	Total (mg/kg)	Leachable (mg/L)	Waste Type
	Inorganic An	ions	
TDS	7436	371.8	Type 4
	Organic Compo	ounds	
Benzene	BDL	BDL	Туре 3
Benzo(a)pyrene	NT	NT	UTD
Carbon tetrachloride	BDL	BDL	Туре 3
Chlorobenzene	BDL	BDL	Туре 3
Chloroform	BDL	BDL	Туре 3
2-Chlorophenol	BDL	BDL	Туре 3
Di (2 ethylhexyl) phthalate	BDL	BDL	Type 3
1,2-Dichlorobenzene	BDL	BDL	Туре 3
1,4-Dichlorobenzene	BDL	BDL	Туре 3
1,2-Dichloroethane	BDL	BDL	Туре 3
1,1-Dichloroethylene	NT	NT	UTD
1,2-Dichloroethylene	NT	NT	UTD
Dichloromethane	NT	NT	UTD
2,4-Dichlorophenol	BDL	BDL	Туре 3
2,4-Dinitrotoluene	NT	NT	UTD
Ethylbenzene	BDL	BDL	Туре 3
Formaldehyde	NT	NT	UTD
Hexachlorobutadiene	BDL	BDL	Туре 3
Methyl ethyl ketone	NT	NT	UTD
MTBE (Methyl t-butyl ether)	NT	NT	UTD
Nitrobenzene	BDL	BDL	Туре 3
PAHs (total)	BDL	N/A	Туре 3
Petroleum H/Cs, C6 to C9	BDL	N/A	Туре 3
Petroleum H/Cs, C10 to C36	BDL	N/A	Туре 3
Phenols (total, non-			
halogenated)	BDL	BDL	Type 3
Polychlorinated biphenyls	NT	NT	UTD
Styrene	BDL	BDL	Туре 3
1,1,1-Tetrachloroethane	BDL	BDL	Туре 3
1,1,2-Tetrachloroethane	BDL	BDL	Туре 3
Tetrachloroethylene	NT	NT	UTD
Toluene	BDL	BDL	Туре 3

Trichlorobenzenes (Total)	BDL	BDL	Туре 3
1,1,1-Trichloroethane	BDL	BDL	Туре 3
1,1,2-Trichloroethane	BDL	BDL	Туре 3
Trichlorophenol	NT	NT	UTD
2,4,6-Trichlorophenol	BDL	BDL	Туре 3
Vinyl Chloride	NT	NT	UTD
Xylene	BDL	BDL	Туре 3

Determining the landfill site class for disposal:

The assigned waste type determines the class of landfill site where a particular waste stream may be disposed. A waste type of one (Type 1) is assigned to waste that presents the most risk to the environment when disposed of at a landfill site and therefore requires disposal at a site with stringent engineering controls corresponding to a so called "Class A" site. Type four (Type 4) waste presents a low risk to the environment when disposed of to a landfill site and therefore may be disposed of at a less stringently engineered, "Class D" site. Type zero waste (Type 0) may not be disposed of to any landfill site in South Africa without prior treatment. The *National Waste Classification and Management Regulations* detail specific requirements surrounding the classification and assessment of waste for disposal to landfill (See references). Note that a GHS (SANS10234) compliant classification and safety data sheet is required before a final waste management decision should be taken and should be read in conjunction with this assessment.

Standard Operational Procedure:

Identification of analysis methods:

Materials/Products Tested	Types of Tests	Standard Specifications, Equipment/Techniques Used
1- Waste (Solid, sludge and liquid)	Quantification of metals by ICP-OES following ASLP, reagent water (Ag, Al, As, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Rb, P, Pb, Sb, Se, Sn, Sr, Ti, Tl, U, V, Zn)	IW-M-01 - Based on method 6010C
2- Solids & Liquids	Determination of VOC; BTEX by GC/MS Headspace	IW-M-02 - Based on method EPA 8260B; EPA 5030B(Liquid) and EPA 5035 (solid)
3- Potable water & leachates	pH at 25 °C	IW-M-03
4- Potable water & leachates	Electrical Conductivity at 25°C	IW-M-04

Disclaimer:

Analysis results relate only to the samples submitted. The laboratory has no control over the sampling protocol, the representivity of the samples and the manner in which the samples were collected, transported, stored, preserved or otherwise handled outside of the laboratory facility and therefore takes no responsibility whatsoever for these activities. Third parties using INTERWASTE results can verify the results by contacting the laboratory. INTERWASTE are not liable or responsible for the customer use and/or interpretation of test results. This certificate cannot be reproduced without the written consent of INTERWASTE laboratory.

Confidentiality Disclaimer:

All test results are confidential and are issued on a clear and accurate report of Analysis. Reports are submitted for exclusive use by our clients and/or our sales consultants. No reference to the work, the results, or to INSTERWASTE HUB LAB may be made in any form of advertising, news release or other public announcement without written authorization.

References

Laboratory Analysis Report for Landfill Assessment			
Requested By:	Keelan Chetty	Waste Name:	MF1 1-2M Slime Stockpile Chrome Direct Reduction
Generator:	Samancor Chrome	Received Date:	12/06/2020
Lab Reference:	IW2020-0463	Analysis Date:	03/07/2020
No. of Samples:	1	Report Date:	28/07/2020
Sample Description:	Black Solid Slime		

Table 1: Miscellaneous tests for sample: IW2020-0463 *

Parameter Tested	Unit	IW2020-0463
Sample Moisture Content	% (w/w)	33.17
Conductivity ^A	uS/cm	491
Initial Sample pH ^A	pH Units	7.34
Sample pH after HCl Addition	pH Units	NT
Leach Solution Applied	Solution Type	Water
Final Leach Solution pH	pH Units	NT
Physical State	NA	Solid
Water Miscibility	NA	Immiscible
Calorific Value	MJ/kg	NT
Additional Information	NA	Low Odour

* UTD = Unable to determine; NT = Not tested; A = SANAS accredited method; Where not specified, the methods are not accredited; Conductivity and pH measured by electronic conductivity and pH meter at ~22C (10% H2O extracts of solids). Moisture by mass loss on heating at ~103C for 30 mins.

Table 2: GC-MS total and leachable organics for sample: IW2020-0463 *

Contaminant Name	Detection Limit (mg/kg)	Concentration (mg/kg)	Theoretical Max. Leach Concentration (mg/L)
Nonane	2.000	BDL	BDL
Decane	2.000	BDL	BDL
Dodecane	2.000	BDL	BDL
Tetradecane	2.000	BDL	BDL
Hexadecane	2.000	BDL	BDL
Octadecane	2.000	BDL	BDL

T0736

Nonadecane	2.000	BDL	BDL
Eicosane	2.000	BDL	BDL
Docosane	2.000	BDL	BDL
Tetracosane	2.000	BDL	BDL
Hexacosane	2.000	BDL	BDL
Octacosane	2.000	BDL	BDL
Hentriacontane	2.000	BDL	BDL
n-Hexane	0.002	BDL	BDL
Heptane	0.002	BDL	BDL
Octane	0.002	BDL	BDL
Nonane2	0.002	BDL	BDL
Decane3	0.002	BDL	BDL
1,2-Dichloroethylene ^A	0.002	BDL	BDL
Chloroform ^A	0.002	BDL	BDL
1,1,1-Trichloroethane ^A	0.002	BDL	BDL
1,2-Dichloroethane ^A	0.002	BDL	BDL
1,1-Dichloropropene ^A	0.002	BDL	BDL
Benzene ^A	0.002	BDL	BDL
Carbon Tetrachloride ^A	0.002	BDL	BDL
Trichloroethylene ^A	0.002	BDL	BDL
Bromodichloromethane ^A	0.002	BDL	BDL
cis-1,3-Dichloropropene ^A	0.002	BDL	BDL
Toluene ^A	0.002	BDL	BDL
1,1,2 Trichloroethane ^A	0.002	BDL	BDL
1,3-Dichloropropane ^A	0.002	BDL	BDL
Dibromochloromethane ^A	0.002	BDL	BDL
1.2 Dibromoethane ^A	0.002	BDL	BDL
Tetrachloroethylene ^A	0.002	BDL	BDL
Chlorobenzene ^A	0.002	BDL	BDL
1,1,1,2-Tetrachloroethane ^A	0.002	BDL	BDL
Ethylbenzene ^A	0.002	BDL	BDL
o-Xylene ^A	0.002	BDL	BDL
Styrene ^A	0.002	BDL	BDL
1,1,2,2-Tetrachloroethane ^A	0.002	BDL	BDL

1,2,3-Trichloropropane ^A	0.002	BDL	BDL
Bromobenzene ^A	0.002	BDL	BDL
Propylbenzene ^A	0.002	BDL	BDL
4-Chlorotoluene ^A	0.002	BDL	BDL
1,2,3-Trimethylbenzene ^A	0.002	BDL	BDL
tert-Butylbenzene ^A	0.002	BDL	BDL
1,4-Dichlorobenzene ^A	0.002	BDL	BDL
sec-Butylbenzene	0.002	BDL	BDL
1,2-Dichlorobenzene ^A	0.002	BDL	BDL
n-Butylbenzene ^A	0.002	BDL	BDL
Hexachloroethane ^A	0.002	BDL	BDL
1,2 Dibromo-3-chloropropane ^A	0.002	BDL	BDL
1,3,5-Trichlorobenzene ^A	0.002	BDL	BDL
Naphthalene ^A	0.002	BDL	BDL
Hexachlorobutadiene ^A	0.002	BDL	BDL
Phenol	2.000	BDL	BDL
Bis(2-chloroethyl) ether	2.000	BDL	BDL
2-Chlorophenol	2.000	BDL	BDL
1,4-Dichlorobenzene	2.000	BDL	BDL
1,2-Dichlorobenzene	2.000	BDL	BDL
2-Methylphenol (o-Cresol)	2.000	BDL	BDL
Bis(2-chloro-1-methylethyl) ether	2.000	BDL	BDL
4-Methylphenol (p-Cresol)	2.000	BDL	BDL
Hexachloroethane	2.000	BDL	BDL
Nitrobenzene	2.000	BDL	BDL
Isophorone	2.000	BDL	BDL
2-Nitrophenol	2.000	BDL	BDL
2,4-Dimethylphenol	2.000	BDL	BDL
Bis(2-chloroethoxy) methane	2.000	BDL	BDL
2,4-Dichlorophenol	2.000	BDL	BDL
1,3,5-Trichlorobenzene	2.000	BDL	BDL
Naphthalene	2.000	BDL	BDL
p-Chloroaniline	2.000	BDL	BDL
4-Chloro-3-methylphenol	2.000	BDL	BDL

2-Methylnaphthalene	2.000	BDL	BDL
Hexachlorocyclopentadiene	2.000	BDL	BDL
2,4,6-Trichlorophenol	2.000	BDL	BDL
2,4,5-Trichlorophenol	2.000	BDL	BDL
1-Chloronaphthalene	2.000	BDL	BDL
Diphenyl ether	2.000	BDL	BDL
2-Nitroaniline	2.000	BDL	BDL
Dimethyl phthalate	2.000	BDL	BDL
2-methyl-1,3-dinitro-Benzene	2.000	BDL	BDL
Acenaphthylene	2.000	BDL	BDL
Acenaphthene	2.000	BDL	BDL
Dibenzofuran	2.000	BDL	BDL
1-Methyl-2,4-dinitrobenzene	2.000	BDL	BDL
Diethylphthalate	2.000	BDL	BDL
1-chloro-4-phenoxybenzene	2.000	BDL	BDL
dimethyl-Cyanamide	2.000	BDL	BDL
Fluorene	2.000	BDL	BDL
3-Methyl-2-phenylpyridine	2.000	BDL	BDL
Azobenzene	2.000	BDL	BDL
1-Bromo-4-phenoxybenzene	2.000	BDL	BDL
Hexachlorobenzene	2.000	BDL	BDL
Pentachlorophenol	2.000	BDL	BDL
Phenanthrene	2.000	BDL	BDL
5H-Indeno[1,2-b]pyridine	2.000	BDL	BDL
Dibutyl phthalate	2.000	BDL	BDL
Fluoranthene	2.000	BDL	BDL
Benzyl butyl phthalate	2.000	BDL	BDL
Triphenylene	2.000	BDL	BDL
Benz[a]anthracene	2.000	BDL	BDL
Bis(2-ethylhexyl) phthalate	2.000	BDL	BDL
Di-n-octyl phthalate	2.000	BDL	BDL
Benzo[b]fluoranthene	2.000	BDL	BDL
Indenol[1,2,3-cd]pyrene	2.000	BDL	BDL
Benzo[b]triphenylene	2.000	BDL	BDL
Benzo[ghi]perylene	2.000	BDL	BDL

Table 3: Landfill assessment for: Contaminant Name	Total (mg/kg)	Leachable (mg/L)	Waste Type	
Inorganic Anions				
TDS	3191.5	159.575	Type 4	
	Organic Com	npounds		
Benzene	BDL	BDL	Туре 3	
Benzo(a)pyrene	NT	NT	UTD	
Carbon tetrachloride	BDL	BDL	Туре 3	
Chlorobenzene	BDL	BDL	Туре 3	
Chloroform	BDL	BDL	Туре 3	
2-Chlorophenol	BDL	BDL	Туре 3	
Di (2 ethylhexyl) phthalate	BDL	BDL	Туре 3	
1,2-Dichlorobenzene	BDL	BDL	Туре 3	
1,4-Dichlorobenzene	BDL	BDL	Туре 3	
1,2-Dichloroethane	BDL	BDL	Туре 3	
1,1-Dichloroethylene	NT	NT	UTD	
1,2-Dichloroethylene	NT	NT	UTD	
Dichloromethane	NT	NT	UTD	
2,4-Dichlorophenol	BDL	BDL	Туре 3	
2,4-Dinitrotoluene	NT	NT	UTD	
Ethylbenzene	BDL	BDL	Туре 3	
Formaldehyde	NT	NT	UTD	
Hexachlorobutadiene	BDL	BDL	Туре 3	
Methyl ethyl ketone	NT	NT	UTD	
MTBE (Methyl t-butyl ether)	NT	NT	UTD	
Nitrobenzene	BDL	BDL	Туре 3	
PAHs (total)	BDL	N/A	Туре 3	
Petroleum H/Cs, C6 to C9	BDL	N/A	Туре 3	
Petroleum H/Cs, C10 to C36	BDL	N/A	Туре 3	
Phenols (total, non-				
halogenated)	BDL	BDL	Туре 3	
Polychlorinated biphenyls	NT	NT	UTD	
Styrene	BDL	BDL	Туре 3	
1,1,1-Tetrachloroethane	BDL	BDL	Туре 3	
1,1,2-Tetrachloroethane	BDL	BDL	Туре 3	
Tetrachloroethylene	NT	NT	UTD	
Toluene	BDL	BDL	Туре 3	

Table 3: Landfill assessment for: IW2020-0463 *

Trichlorobenzenes (Total)	BDL	BDL	Туре 3
1,1,1-Trichloroethane	BDL	BDL	Туре 3
1,1,2-Trichloroethane	BDL	BDL	Туре 3
Trichlorophenol	NT	NT	UTD
2,4,6-Trichlorophenol	BDL	BDL	Туре 3
Vinyl Chloride	NT	NT	UTD
Xylene	BDL	BDL	Туре 3

Determining the landfill site class for disposal:

The assigned waste type determines the class of landfill site where a particular waste stream may be disposed. A waste type of one (Type 1) is assigned to waste that presents the most risk to the environment when disposed of at a landfill site and therefore requires disposal at a site with stringent engineering controls corresponding to a so called "Class A" site. Type four (Type 4) waste presents a low risk to the environment when disposed of to a landfill site and therefore may be disposed of at a less stringently engineered, "Class D" site. Type zero waste (Type 0) may not be disposed of to any landfill site in South Africa without prior treatment. The *National Waste Classification and Management Regulations* detail specific requirements surrounding the classification and assessment of waste for disposal to landfill (See references). Note that a GHS (SANS10234) compliant classification and safety data sheet is required before a final waste management decision should be taken and should be read in conjunction with this assessment.

Standard Operational Procedure:

Identification of analysis methods:

Materials/Products Tested	Types of Tests	Standard Specifications, Equipment/Techniques Used
1- Waste (Solid, sludge and liquid)	Quantification of metals by ICP-OES following ASLP, reagent water (Ag, Al, As, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Rb, P, Pb, Sb, Se, Sn, Sr, Ti, Tl, U, V, Zn)	IW-M-01 - Based on method 6010C
2- Solids & Liquids	Determination of VOC; BTEX by GC/MS Headspace	IW-M-02 - Based on method EPA 8260B; EPA 5030B(Liquid) and EPA 5035 (solid)
3- Potable water & leachates	pH at 25 °C	IW-M-03
4- Potable water & leachates	Electrical Conductivity at 25°C	IW-M-04

Disclaimer:

Analysis results relate only to the samples submitted. The laboratory has no control over the sampling protocol, the representivity of the samples and the manner in which the samples were collected, transported, stored, preserved or otherwise handled outside of the laboratory facility and therefore takes no responsibility whatsoever for these activities. Third parties using INTERWASTE results can verify the results by contacting the laboratory. INTERWASTE are not liable or responsible for the customer use and/or interpretation of test results. This certificate cannot be reproduced without the written consent of INTERWASTE laboratory.

Confidentiality Disclaimer:

All test results are confidential and are issued on a clear and accurate report of Analysis. Reports are submitted for exclusive use by our clients and/or our sales consultants. No reference to the work, the results, or to INSTERWASTE HUB LAB may be made in any form of advertising, news release or other public announcement without written authorization.

References

Laboratory Analysis Report for Landfill Assessment				
Requested By:	Keelan Chetty	Keelan Chetty Waste Name: MF2 3-4M Slime		
			Stockpile Chrome Direct	
			Reduction	
Generator:	Samancor Chrome	Received Date:	12/06/2020	
Lab Reference:	IW2020-0462	Analysis Date:	03/07/2020	
No. of Samples:	1 Report Date: 28/07/2020			
Sample Description:	Dry Brown Slime			

Table 1: Miscellaneous tests for sample: IW2020-0462 *

Parameter Tested	Unit	IW2020-0462
Sample Moisture Content	% (w/w)	3.85
Conductivity ^A	uS/cm	273
Initial Sample pH ^A	pH Units	9.17
Sample pH after HCl Addition	pH Units	NT
Leach Solution Applied	Solution Type	Water
Final Leach Solution pH	pH Units	NT
Physical State	NA	Solid
Water Miscibility	NA	Immiscible
Calorific Value	MJ/kg	NT
Additional Information	NA	Low Odour

* UTD = Unable to determine; NT = Not tested; A = SANAS accredited method; Where not specified, the methods are not accredited; Conductivity and pH measured by electronic conductivity and pH meter at ~22C (10% H2O extracts of solids). Moisture by mass loss on heating at ~103C for 30 mins.

Table 2: GC-MS total and leachable organics for sample: IW2020-0462 *

Contaminant Name	Detection Limit (mg/kg)	Concentration (mg/kg)	Theoretical Max. Leach Concentration (mg/L)
Nonane	2.000	BDL	BDL
Decane	2.000	BDL	BDL
Dodecane	2.000	BDL	BDL
Tetradecane	2.000	BDL	BDL
Hexadecane	2.000	BDL	BDL
Octadecane	2.000	BDL	BDL

Nonadecane	2.000	BDL	BDL
Eicosane	2.000	BDL	BDL
Docosane	2.000	BDL	BDL
Tetracosane	2.000	BDL	BDL
Hexacosane	2.000	BDL	BDL
Octacosane	2.000	BDL	BDL
Hentriacontane	2.000	BDL	BDL
n-Hexane	0.002	BDL	BDL
Heptane	0.002	BDL	BDL
Octane	0.002	BDL	BDL
Nonane2	0.002	BDL	BDL
Decane3	0.002	BDL	BDL
1,2-Dichloroethylene ^A	0.002	BDL	BDL
Chloroform ^A	0.002	BDL	BDL
1,1,1-Trichloroethane ^A	0.002	BDL	BDL
1,2-Dichloroethane ^A	0.002	BDL	BDL
1,1-Dichloropropene ^A	0.002	BDL	BDL
Benzene ^A	0.002	BDL	BDL
Carbon Tetrachloride ^A	0.002	BDL	BDL
Trichloroethylene ^A	0.002	BDL	BDL
Bromodichloromethane ^A	0.002	BDL	BDL
cis-1,3-Dichloropropene ^A	0.002	BDL	BDL
Toluene ^A	0.002	BDL	BDL
1,1,2 Trichloroethane ^A	0.002	BDL	BDL
1,3-Dichloropropane ^A	0.002	BDL	BDL
Dibromochloromethane ^A	0.002	BDL	BDL
1.2 Dibromoethane ^A	0.002	BDL	BDL
Tetrachloroethylene ^A	0.002	BDL	BDL
Chlorobenzene ^A	0.002	BDL	BDL
1,1,1,2-Tetrachloroethane ^A	0.002	BDL	BDL
Ethylbenzene ^A	0.002	BDL	BDL
o-Xylene ^A	0.002	BDL	BDL
Styrene ^A	0.002	BDL	BDL
1,1,2,2-Tetrachloroethane ^A	0.002	BDL	BDL

1,2,3-Trichloropropane ^A	0.002	BDL	BDL
Bromobenzene ^A	0.002	BDL	BDL
Propylbenzene ^A	0.002	BDL	BDL
4-Chlorotoluene ^A	0.002	BDL	BDL
1,2,3-Trimethylbenzene ^A	0.002	BDL	BDL
tert-Butylbenzene ^A	0.002	BDL	BDL
1,4-Dichlorobenzene ^A	0.002	BDL	BDL
sec-Butylbenzene ^A	0.002	BDL	BDL
1,2-Dichlorobenzene ^A	0.002	BDL	BDL
n-Butylbenzene ^A	0.002	BDL	BDL
Hexachloroethane ^A	0.002	BDL	BDL
1,2 Dibromo-3-chloropropane ^A	0.002	BDL	BDL
1,3,5-Trichlorobenzene ^A	0.002	BDL	BDL
Naphthalene ^A	0.002	BDL	BDL
Hexachlorobutadiene ^A	0.002	BDL	BDL
Phenol	2.000	BDL	BDL
Bis(2-chloroethyl) ether	2.000	BDL	BDL
2-Chlorophenol	2.000	BDL	BDL
1,4-Dichlorobenzene	2.000	BDL	BDL
1,2-Dichlorobenzene	2.000	BDL	BDL
2-Methylphenol (o-Cresol)	2.000	BDL	BDL
Bis(2-chloro-1-methylethyl)			
ether	2.000	BDL	BDL
4-Methylphenol (p-Cresol)	2.000	BDL	BDL
Hexachloroethane	2.000	BDL	BDL
Nitrobenzene	2.000	BDL	BDL
Isophorone	2.000	BDL	BDL
2-Nitrophenol	2.000	BDL	BDL
2,4-Dimethylphenol	2.000	BDL	BDL
Bis(2-chloroethoxy) methane	2.000	BDL	BDL
2,4-Dichlorophenol	2.000	BDL	BDL
1,3,5-Trichlorobenzene	2.000	BDL	BDL
Naphthalene	2.000	BDL	BDL
p-Chloroaniline	2.000	BDL	BDL
4-Chloro-3-methylphenol	2.000	BDL	BDL

2-Methylnaphthalene	2.000	BDL	BDL
Hexachlorocyclopentadiene	2.000	BDL	BDL
2,4,6-Trichlorophenol	2.000	BDL	BDL
2,4,5-Trichlorophenol	2.000	BDL	BDL
1-Chloronaphthalene	2.000	BDL	BDL
Diphenyl ether	2.000	BDL	BDL
2-Nitroaniline	2.000	BDL	BDL
Dimethyl phthalate	2.000	BDL	BDL
2-methyl-1,3-dinitro-Benzene	2.000	BDL	BDL
Acenaphthylene	2.000	BDL	BDL
Acenaphthene	2.000	BDL	BDL
Dibenzofuran	2.000	BDL	BDL
1-Methyl-2,4-dinitrobenzene	2.000	BDL	BDL
Diethylphthalate	2.000	BDL	BDL
1-chloro-4-phenoxybenzene	2.000	BDL	BDL
dimethyl-Cyanamide	2.000	BDL	BDL
Fluorene	2.000	BDL	BDL
3-Methyl-2-phenylpyridine	2.000	BDL	BDL
Azobenzene	2.000	BDL	BDL
1-Bromo-4-phenoxybenzene	2.000	BDL	BDL
Hexachlorobenzene	2.000	BDL	BDL
Pentachlorophenol	2.000	BDL	BDL
Phenanthrene	2.000	BDL	BDL
5H-Indeno[1,2-b]pyridine	2.000	BDL	BDL
Dibutyl phthalate	2.000	BDL	BDL
Fluoranthene	2.000	BDL	BDL
Benzyl butyl phthalate	2.000	BDL	BDL
Triphenylene	2.000	BDL	BDL
Benz[a]anthracene	2.000	BDL	BDL
Bis(2-ethylhexyl) phthalate	2.000	BDL	BDL
Di-n-octyl phthalate	2.000	BDL	BDL
Benzo[b]fluoranthene	2.000	BDL	BDL
Indenol[1,2,3-cd]pyrene	2.000	BDL	BDL
Benzo[b]triphenylene	2.000	BDL	BDL
Benzo[ghi]perylene	2.000	BDL	BDL

Table 3: Landfill assessment for: Contaminant Name	Total (mg/kg)	Leachable (mg/L)	Waste Type	
	Inorganic Anions			
TDS	1774.5	88.725	Type 4	
	Organic Co	mpounds		
Benzene	BDL	BDL	Туре 3	
Benzo(a)pyrene	NT	NT	UTD	
Carbon tetrachloride	BDL	BDL	Туре 3	
Chlorobenzene	BDL	BDL	Туре 3	
Chloroform	BDL	BDL	Туре 3	
2-Chlorophenol	BDL	BDL	Туре 3	
Di (2 ethylhexyl) phthalate	BDL	BDL	Туре 3	
1,2-Dichlorobenzene	BDL	BDL	Туре 3	
1,4-Dichlorobenzene	BDL	BDL	Туре 3	
1,2-Dichloroethane	BDL	BDL	Туре 3	
1,1-Dichloroethylene	NT	NT	UTD	
1,2-Dichloroethylene	NT	NT	UTD	
Dichloromethane	NT	NT	UTD	
2,4-Dichlorophenol	BDL	BDL	Туре 3	
2,4-Dinitrotoluene	NT	NT	UTD	
Ethylbenzene	BDL	BDL	Туре 3	
Formaldehyde	NT	NT	UTD	
Hexachlorobutadiene	BDL	BDL	Туре 3	
Methyl ethyl ketone	NT	NT	UTD	
MTBE (Methyl t-butyl ether)	NT	NT	UTD	
Nitrobenzene	BDL	BDL	Туре 3	
PAHs (total)	BDL	N/A	Туре 3	
Petroleum H/Cs, C6 to C9	BDL	N/A	Туре 3	
Petroleum H/Cs, C10 to C36	BDL	N/A	Туре 3	
Phenols (total, non-				
halogenated)	BDL	BDL	Туре 3	
Polychlorinated biphenyls	NT	NT	UTD	
Styrene	BDL	BDL	Туре 3	
1,1,1-Tetrachloroethane	BDL	BDL	Туре 3	
1,1,2-Tetrachloroethane	BDL	BDL	Туре 3	
Tetrachloroethylene	NT	NT	UTD	
Toluene	BDL	BDL	Туре 3	

Table 3: Landfill assessment for: IW2020-0462 *

Trichlorobenzenes (Total)	BDL	BDL	Туре 3
1,1,1-Trichloroethane	BDL	BDL	Туре 3
1,1,2-Trichloroethane	BDL	BDL	Туре 3
Trichlorophenol	NT	NT	UTD
2,4,6-Trichlorophenol	BDL	BDL	Туре 3
Vinyl Chloride	NT	NT	UTD
Xylene	BDL	BDL	Туре 3

Determining the landfill site class for disposal:

The assigned waste type determines the class of landfill site where a particular waste stream may be disposed. A waste type of one (Type 1) is assigned to waste that presents the most risk to the environment when disposed of at a landfill site and therefore requires disposal at a site with stringent engineering controls corresponding to a so called "Class A" site. Type four (Type 4) waste presents a low risk to the environment when disposed of to a landfill site and therefore may be disposed of at a less stringently engineered, "Class D" site. Type zero waste (Type 0) may not be disposed of to any landfill site in South Africa without prior treatment. The *National Waste Classification and Management Regulations* detail specific requirements surrounding the classification and assessment of waste for disposal to landfill (See references). Note that a GHS (SANS10234) compliant classification and safety data sheet is required before a final waste management decision should be taken and should be read in conjunction with this assessment.

Standard Operational Procedure:

Identification of analysis methods:

Materials/Products Tested	Types of Tests	Standard Specifications, Equipment/Techniques Used
1- Waste (Solid, sludge and liquid)	Quantification of metals by ICP-OES following ASLP, reagent water (Ag, Al, As, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Rb, P, Pb, Sb, Se, Sn, Sr, Ti, Tl, U, V, Zn)	IW-M-01 - Based on method 6010C
2- Solids & Liquids	Determination of VOC; BTEX by GC/MS Headspace	IW-M-02 - Based on method EPA 8260B; EPA 5030B(Liquid) and EPA 5035 (solid)
3- Potable water & leachates	pH at 25 °C	IW-M-03
4- Potable water & leachates	Electrical Conductivity at 25°C	IW-M-04

Disclaimer:

Analysis results relate only to the samples submitted. The laboratory has no control over the sampling protocol, the representivity of the samples and the manner in which the samples were collected, transported, stored, preserved or otherwise handled outside of the laboratory facility and therefore takes no responsibility whatsoever for these activities. Third parties using INTERWASTE results can verify the results by contacting the laboratory. INTERWASTE are not liable or responsible for the customer use and/or interpretation of test results. This certificate cannot be reproduced without the written consent of INTERWASTE laboratory.

Confidentiality Disclaimer:

All test results are confidential and are issued on a clear and accurate report of Analysis. Reports are submitted for exclusive use by our clients and/or our sales consultants. No reference to the work, the results, or to INSTERWASTE HUB LAB may be made in any form of advertising, news release or other public announcement without written authorization.

References

Laboratory Analysis Report for Landfill Assessment			
Requested By:	Keelan Chetty	Waste Name:	MF5 0.2-0.8M Slime Stockpile Chrome Direct Reduction
Generator:	Samancor Chrome	Received Date:	12/06/2020
Lab Reference:	IW2020-0461	Analysis Date:	03/07/2020
No. of Samples:	1	Report Date:	28/07/2020
Sample Description:	Black & Grey Clay		

Table 1: Miscellaneous tests for sample: IW2020-0461 *

Parameter Tested	Unit	IW2020-0461
Sample Moisture Content	% (w/w)	51.01
Conductivity ^A	uS/cm	588
Initial Sample pH ^A	pH Units	9.15
Sample pH after HCI Addition	pH Units	NT
Leach Solution Applied	Solution Type	Water
Final Leach Solution pH	pH Units	NT
Physical State	NA	Solid
Water Miscibility	NA	Immiscible
Calorific Value	MJ/kg	NT
Additional Information	NA	Low Odour

* UTD = Unable to determine; NT = Not tested; A = SANAS accredited method; Where not specified, the methods are not accredited; Conductivity and pH measured by electronic conductivity and pH meter at ~22C (10% H2O extracts of solids). Moisture by mass loss on heating at ~103C for 30 mins.

Table 2: GC-MS total and leachable organics for sample: IW2020-0461 *

Contaminant Name	Detection Limit (mg/kg)	Concentration (mg/kg)	Theoretical Max. Leach Concentration (mg/L)
Nonane	2.000	BDL	BDL
Decane	2.000	BDL	BDL
Dodecane	2.000	BDL	BDL
Tetradecane	2.000	BDL	BDL
Hexadecane	2.000	BDL	BDL
Octadecane	2.000	BDL	BDL

T0736

Nonadecane	2.000	BDL	BDL
Eicosane	2.000	BDL	BDL
Docosane	2.000	BDL	BDL
Tetracosane	2.000	BDL	BDL
Hexacosane	2.000	BDL	BDL
Octacosane	2.000	BDL	BDL
Hentriacontane	2.000	BDL	BDL
n-Hexane	0.002	BDL	BDL
Heptane	0.002	BDL	BDL
Octane	0.002	BDL	BDL
Nonane2	0.002	BDL	BDL
Decane3	0.002	BDL	BDL
1,2-Dichloroethylene ^A	0.002	BDL	BDL
Chloroform ^A	0.002	BDL	BDL
1,1,1-Trichloroethane ^A	0.002	BDL	BDL
1,2-Dichloroethane ^A	0.002	BDL	BDL
1,1-Dichloropropene ^A	0.002	BDL	BDL
Benzene ^A	0.002	BDL	BDL
Carbon Tetrachloride ^A	0.002	BDL	BDL
Trichloroethylene ^A	0.002	BDL	BDL
Bromodichloromethane ^A	0.002	BDL	BDL
cis-1,3-Dichloropropene ^A	0.002	BDL	BDL
Toluene ^A	0.002	BDL	BDL
1,1,2 Trichloroethane ^A	0.002	BDL	BDL
1,3-Dichloropropane ^A	0.002	BDL	BDL
Dibromochloromethane ^A	0.002	BDL	BDL
1.2 Dibromoethane ^A	0.002	BDL	BDL
Tetrachloroethylene ^A	0.002	BDL	BDL
Chlorobenzene ^A	0.002	BDL	BDL
1,1,1,2-Tetrachloroethane ^A	0.002	BDL	BDL
Ethylbenzene ^A	0.002	BDL	BDL
o-Xylene ^A	0.002	BDL	BDL
Styrene ^A	0.002	BDL	BDL
1,1,2,2-Tetrachloroethane ^A	0.002	BDL	BDL

1,2,3-Trichloropropane ^A	0.002	BDL	BDL
Bromobenzene ^A	0.002	BDL	BDL
Propylbenzene ^A	0.002	BDL	BDL
4-Chlorotoluene ^A	0.002	BDL	BDL
1,2,3-Trimethylbenzene ^A	0.002	BDL	BDL
tert-Butylbenzene ^A	0.002	BDL	BDL
1,4-Dichlorobenzene ^A	0.002	BDL	BDL
sec-Butylbenzene ^A	0.002	BDL	BDL
1,2-Dichlorobenzene ^A	0.002	BDL	BDL
n-Butylbenzene ^A	0.002	BDL	BDL
Hexachloroethane ^A	0.002	BDL	BDL
1,2 Dibromo-3-chloropropane ^A	0.002	BDL	BDL
1,3,5-Trichlorobenzene ^A	0.002	BDL	BDL
Naphthalene ^A	0.002	BDL	BDL
Hexachlorobutadiene ^A	0.002	BDL	BDL
Phenol	2.000	BDL	BDL
Bis(2-chloroethyl) ether	2.000	BDL	BDL
2-Chlorophenol	2.000	BDL	BDL
1,4-Dichlorobenzene	2.000	BDL	BDL
1,2-Dichlorobenzene	2.000	BDL	BDL
2-Methylphenol (o-Cresol)	2.000	BDL	BDL
Bis(2-chloro-1-methylethyl)			
ether	2.000	BDL	BDL
4-Methylphenol (p-Cresol)	2.000	BDL	BDL
Hexachloroethane	2.000	BDL	BDL
Nitrobenzene	2.000	BDL	BDL
Isophorone	2.000	BDL	BDL
2-Nitrophenol	2.000	BDL	BDL
2,4-Dimethylphenol	2.000	BDL	BDL
Bis(2-chloroethoxy) methane	2.000	BDL	BDL
2,4-Dichlorophenol	2.000	BDL	BDL
1,3,5-Trichlorobenzene	2.000	BDL	BDL
Naphthalene	2.000	BDL	BDL
p-Chloroaniline	2.000	BDL	BDL
4-Chloro-3-methylphenol	2.000	BDL	BDL

2-Methylnaphthalene	2.000	BDL	BDL
Hexachlorocyclopentadiene	2.000	BDL	BDL
2,4,6-Trichlorophenol	2.000	BDL	BDL
2,4,5-Trichlorophenol	2.000	BDL	BDL
1-Chloronaphthalene	2.000	BDL	BDL
Diphenyl ether	2.000	BDL	BDL
2-Nitroaniline	2.000	BDL	BDL
Dimethyl phthalate	2.000	BDL	BDL
2-methyl-1,3-dinitro-Benzene	2.000	BDL	BDL
Acenaphthylene	2.000	BDL	BDL
Acenaphthene	2.000	BDL	BDL
Dibenzofuran	2.000	BDL	BDL
1-Methyl-2,4-dinitrobenzene	2.000	BDL	BDL
Diethylphthalate	2.000	BDL	BDL
1-chloro-4-phenoxybenzene	2.000	BDL	BDL
dimethyl-Cyanamide	2.000	BDL	BDL
Fluorene	2.000	BDL	BDL
3-Methyl-2-phenylpyridine	2.000	BDL	BDL
Azobenzene	2.000	BDL	BDL
1-Bromo-4-phenoxybenzene	2.000	BDL	BDL
Hexachlorobenzene	2.000	BDL	BDL
Pentachlorophenol	2.000	BDL	BDL
Phenanthrene	2.000	BDL	BDL
5H-Indeno[1,2-b]pyridine	2.000	BDL	BDL
Dibutyl phthalate	2.000	BDL	BDL
Fluoranthene	2.000	BDL	BDL
Benzyl butyl phthalate	2.000	BDL	BDL
Triphenylene	2.000	BDL	BDL
Benz[a]anthracene	2.000	BDL	BDL
Bis(2-ethylhexyl) phthalate	2.000	BDL	BDL
Di-n-octyl phthalate	2.000	BDL	BDL
Benzo[b]fluoranthene	2.000	BDL	BDL
Indenol[1,2,3-cd]pyrene	2.000	BDL	BDL
Benzo[b]triphenylene	2.000	BDL	BDL
Benzo[ghi]perylene	2.000	BDL	BDL

* UTD = Unable to determine; NT = Not tested; BDL = Element below indicated detection limit; A = SANAS accredited method; Where not specified, the methods are not accredited; All elements measured by GC-MS analysis

Table 3: Landfill assessment for: Contaminant Name	Total (mg/kg)	Leachable (mg/L)	Waste Type
	Inorganic Ar		
TDS	3822	191.1	Туре 4
	Organic Comp	ounds	
Benzene	BDL	BDL	Туре 3
Benzo(a)pyrene	NT	NT	UTD
Carbon tetrachloride	BDL	BDL	Туре 3
Chlorobenzene	BDL	BDL	Туре 3
Chloroform	BDL	BDL	Туре 3
2-Chlorophenol	BDL	BDL	Туре 3
Di (2 ethylhexyl) phthalate	BDL	BDL	Туре 3
1,2-Dichlorobenzene	BDL	BDL	Туре 3
1,4-Dichlorobenzene	BDL	BDL	Туре 3
1,2-Dichloroethane	BDL	BDL	Туре 3
1,1-Dichloroethylene	NT	NT	UTD
1,2-Dichloroethylene	NT	NT	UTD
Dichloromethane	NT	NT	UTD
2,4-Dichlorophenol	BDL	BDL	Туре 3
2,4-Dinitrotoluene	NT	NT	UTD
Ethylbenzene	BDL	BDL	Туре 3
Formaldehyde	NT	NT	UTD
Hexachlorobutadiene	BDL	BDL	Туре 3
Methyl ethyl ketone	NT	NT	UTD
MTBE (Methyl t-butyl ether)	NT	NT	UTD
Nitrobenzene	BDL	BDL	Туре 3
PAHs (total)	BDL	N/A	Туре 3
Petroleum H/Cs, C6 to C9	BDL	N/A	Туре 3
Petroleum H/Cs, C10 to C36	BDL	N/A	Туре 3
Phenols (total, non-			
halogenated)	BDL	BDL	Туре 3
Polychlorinated biphenyls	NT	NT	UTD
Styrene	BDL	BDL	Туре 3
1,1,1-Tetrachloroethane	BDL	BDL	Type 3
1,1,2-Tetrachloroethane	BDL	BDL	Туре 3
Tetrachloroethylene	NT	NT	UTD
Toluene	BDL	BDL	Туре 3

Table 3: Landfill assessment for: IW2020-0461 *

Trichlorobenzenes (Total)	BDL	BDL	Туре 3
1,1,1-Trichloroethane	BDL	BDL	Туре 3
1,1,2-Trichloroethane	BDL	BDL	Туре 3
Trichlorophenol	NT	NT	UTD
2,4,6-Trichlorophenol	BDL	BDL	Туре 3
Vinyl Chloride	NT	NT	UTD
Xylene	BDL	BDL	Туре 3

*UTD = Unable to determine; NT = Not tested; BDL = Element below indicated detection limit;

Determining the landfill site class for disposal:

The assigned waste type determines the class of landfill site where a particular waste stream may be disposed. A waste type of one (Type 1) is assigned to waste that presents the most risk to the environment when disposed of at a landfill site and therefore requires disposal at a site with stringent engineering controls corresponding to a so called "Class A" site. Type four (Type 4) waste presents a low risk to the environment when disposed of to a landfill site and therefore may be disposed of at a less stringently engineered, "Class D" site. Type zero waste (Type 0) may not be disposed of to any landfill site in South Africa without prior treatment. The *National Waste Classification and Management Regulations* detail specific requirements surrounding the classification and assessment of waste for disposal to landfill (See references). Note that a GHS (SANS10234) compliant classification and safety data sheet is required before a final waste management decision should be taken and should be read in conjunction with this assessment.

Standard Operational Procedure:

Identification of analysis methods:

IW-S-1: Determination of Metals in Liquids and solids using ICP-OES Optima 8300; IW-S-2: Determination of the VOC content of liquid and solids using GC6850, MS5976C; IW-S-3: pH Measurement; IW-S-4: EC Measurement; IW-S-5: Calibration and measurement of samples using Supercal Modular calorimeter; IW-S-6: Toxicity characteristic leaching procedure – TCLP; IW-S-7: Field Protable X-ray Flourecence FTXRF; AS 4439.1-1999: Wastes, sediments and contaminated soils - Preparation of leachates - Preliminary assessment; AS 4439.3-1997: Wastes, sediments and contaminated soils - Preparation of leachates - Bottle leaching procedures.

Scope of Accreditation:

Materials/Products Tested	Types of Tests	Standard Specifications, Equipment/Techniques Used
1- Waste (Solid, sludge and liquid)	Quantification of metals by ICP-OES following ASLP, reagent water (Ag, Al, As, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Rb, P, Pb, Sb, Se, Sn, Sr, Ti, Tl, U, V, Zn)	IW-M-01 - Based on method 6010C
2- Solids & Liquids	Determination of VOC; BTEX by GC/MS Headspace	IW-M-02 - Based on method EPA 8260B; EPA 5030B(Liquid) and EPA 5035 (solid)
3- Potable water & leachates	pH at 25 °C	IW-M-03
4- Potable water & leachates	Electrical Conductivity at 25°C	IW-M-04

Disclaimer:

Analysis results relate only to the samples submitted. The laboratory has no control over the sampling protocol, the representivity of the samples and the manner in which the samples were collected, transported, stored, preserved or otherwise handled outside of the laboratory facility and therefore takes no responsibility whatsoever for these activities. Third parties using INTERWASTE results can verify the results by contacting the laboratory. INTERWASTE are not liable or responsible for the customer use and/or interpretation of test results. This certificate cannot be reproduced without the written consent of INTERWASTE laboratory.

Confidentiality Disclaimer:

All test results are confidential and are issued on a clear and accurate report of Analysis. Reports are submitted for exclusive use by our clients and/or our sales consultants. No reference to the work, the results, or to INSTERWASTE HUB LAB may be made in any form of advertising, news release or other public announcement without written authorization.

References

1.) Government Notice R.365, National Environmental Management: Waste Act (59/2008): National norms and standards for the assessment of waste for landfill disposal, Gazette No. 36

ANNEXURE C: GENERATOR SANS 10234 SAFETY DATA SHEET (SDS) FOR CHROME DIRECT REDUCTION SLIMES STOCKPILE

SANS10234 Safety Data Sheet Samancor Chrome Chrome Direct Reduction (CDR) Slimes Stockpile

	oduct & Gene	rator Identification		
Waste Type	Chrome Direc Slimes Stock	t Reduction (CDR) pile	Synonym(s)	-
	Samancor Ch		Mail: Corne.pretorius@sama	ancorcr.com
Waste	Middelburg Ferrochrome		Emergency Contact Person	Corne Pretorius
Generator			Emergency No.	+27 (0)
Waste Origin	whereby chro	me ore is brought into	o contact with finely divided co	he production of low carbon ferrochrome, bal at high temperature. The resultant slimes r sprays, and stored in the slimes dam.
Section 2: H	azards Identif	ication		
Physical		Health		Environmental
-		(Category 3)	ry 2)	
GHS Hazard	Symbol(s)	(Category 1)		
	Symbol(s)		Danger	
GHS Hazard Signal Word	Symbol(s)		Danger	
		(Category 1) H315: Causes skin H319: Causes seve H335: May cause re H350: May cause ca	irritation re eye irritation espiratory irritation	jed or repeated exposure
Signal Word		(Category 1) H315: Causes skin H319: Causes seve H335: May cause re H350: May cause ca	irritation re eye irritation spiratory irritation ancer	ged or repeated exposure

	breathing P308+P313: If expo P332+P313: If skin i P337+P313: If eye i P305+P351+P338: contact lenses, if pro P405: Store locked P403+P233: Store ir	sed or concerned: Call a rritation occurs: Get medi rritation persists: Get mec IF IN EYES: Rinse cauti esent and easy to do. Co up	dical advice/attention iously with water for several minutes. Remove ontinue rinsing and keep container tightly closed
Section 3: Composition /	Information on Ingro	diante	
Common Chemical Name		CAS#	Concentration (%/weight)
Quartz		14808-60-7	2.09 – 42.71
Mullite		1302-93-8	0.06 - 8.65
Bassanite		7778-18-9	0.16 - 2.17
Magnetite		1317-61-9	0.36 - 1.02
Iron		7439-89-6	0.05 - 0.99
Chromite		1308-31-2	
Calcite		471-34-1	2.10 - 14.60
Dolomite			0.52 – 2.27
		16389-88-1	0 – 0.86
Hematite		1317-60-8	0 – 1.46
Kaolinite		1318-74-7	0 – 5.34
Plagioclase		-	0 – 0.83
Aluminium Oxide		1344-28-1	0 – 5.76
Silicon Dioxide		14808-60-7	8.61 – 31.59
Phosphorous Pentoxide		1314-56-3	0.16 – 0.49
Calcium Carbonate		471-34-1	0 – 1.55
Manganese Oxide		1313-13-9	0.14 – 0.82
Iron Oxide		1309-37-1	0.83 – 14.97
Sodium Sulphate		7757-82-6	0.49 - 6.92
The Chrome Direct Reduc their indicated concentration Section 4: First Aid Meas	ons in this waste stream		tioned ingredients, which may be present within
General advice		nvsician. Show this safety	data sheet to the doctor in attendance.
Contact with Skin	Take off contaminate		ediately. Wash off with plenty of soap and water.
Contact with Eyes	Check for and remove water for at least 15 r	ve contact lenses. Hold e ninutes. Obtain medical a	eyelids open and rinse thoroughly with plenty of advice.
Inhalation		or persist, call for medica	
Ingestion	Never give anything induce vomiting.	by mouth to an unconsc	cious person. Rinse mouth with water. DO NOT
PPE for First Aid	• •	ning, gloves, and eye pro	otection.
Responders		5, 5,	
Section 5: Fire-fighting N	lessures		
Extinguishing Media		edium suitable to the surr	ounding environment

Combustion Protective equipme precautions for fire- fighters Section 6: Acciden Personal Precaution PPE		Not determined Wear self-conta					
precautions for fire- fighters Section 6: Acciden Personal Precaution PPE		Wear self-conta	ined breathi				
fighters Section 6: Acciden Personal Precaution PPE		Wear self-conta	ined breathi				
Section 6: Acciden Personal Precaution PPE		ions for fire-		ined breathing apparatus for firefighting as necessary.			
Personal Precaution PPE		L					
Personal Precaution PPE	tal Rel	ease Measures					
PPE			clean-up cre	ews must be properly	trained.		
Environmental Precautions		Prevent further I the environmen	•	0	. Do not let product enter drains. Discharge into		
		SMALL S	SPILL		LARGE SPILL		
	As per large sp		∥ →→	receptacle, noting th	te manually, and place into appropriate nat any materials used during the clean-up cards as the Chrome Direct Reduction Slimes		
Materials/containers to be Used for Clea		None identified.					
Section 7: Handlin	g and {	Storage					
Precautions for Safe	-		dance with	good industrial hygien	e and safety practice. The personal protection		
Handling			entified in Section 8 of the SDS should be used as appropriate.				
Precautions for Safe	3	Apply relevant li	icense cond	itions and or National V	Vaste Storage Standards, as relevant.		
Storage							
Compatibility Issues	3	Not determined					
Section 8: Exposu	ra Can	trala / Daraanal i	Drotoction				
	ponent		FIOLECLION	Source	Limit (mg/m ³ unless otherwise stated)		
Exposure Quart				OSHA (Dust)	0.1 (TWA)		
	z um Cart	onate		OSHA (Dust)	15 (PEL)		
	um Sulp			DNEL (Dust)	4 (TWA)		
000	<u></u>			2 (2.009	. (
Engineering Clear Controls	up cor	ntaminated areas					
Eye Tent Tent	ction	Safety glasses of	orgoggles.				
Personal Personal Brotective apod apod apod	ction		•	ning covering body as determined by a risk assessment.			
Resp Prote	iratory ction	Suitable respiration health and safet		ent to be selected und	er guidance by the relevant occupational		
Section 9: Physica	land (hemical Proper	ties				
Appearance				Characteristics (contin	nued)		
Physical state		Solid	Initial boil	· · · · · · · · · · · · · · · · · · ·	Not determined		
Colour		Grey to black	Flash poin		Not determined		
Odour	I			ion temperature	Not determined		
Odaur	_	Not determined	-	sition temperature	Not determined		
Odour		Not determined			Not determined		
Odour Odour threshold							
	ristics		Partition c octanol/wa	oefficient: n- ater	Not determined		

Melting poin	nt	Not determined %	volatile	s)	Not determined				
Flammability		Not determined E		1	Not determined				
	-		•						
	Stability and	=							
Chemical sta		Stable under norm	al conditi	ons.					
Possibility of Reactions	Hazardous	Not subject to poly	rmerisatic	on under normal condit	ions.				
Hazardous D Products	ecomposition	Not determined.							
	Substances /	Not determined.	Not determined.						
Conditions to	Avoid	Incompatible mate	rials.						
		•							
Section 11:	Toxicological								
Likely Routes	s of Exposure	Dermal, inhalation,	and eye	contact					
Symptoms Effects	Skin/eye Contact	May cause serious	s skin and	eye irritation.					
Sym	Inhalation	Not determined.							
Acute Sympto and Effects	Ingestion / Oral exposure	Not determined.							
Constituent /	Ingredient	LD ₅₀			LC ₅₀				
Toxicity		Oral	Derma		Inhalation (Vapours)				
Chrome Dired Slimes Stock		> 5 000mg/kg	> 5 000	5 000mg/kg > 20.0 mg/l					
Specific Targ Toxicity	jet Organ	May cause respira prolonged or repea			posure. Causes damage to organs through				
Germ Cell M	utagenicity	-	-						
Carcinogenic	bity	May cause cancer							
Reproductive	e toxicity	-							
Irritancy		-							
Sensitization		-							
Section 12:	Ecological In	formation							
Constituent E		LC ₅₀		EC ₅₀					
Chrome Dire	ct Reduction	> 100 mg/L		> 100 mg/L					
Slimes Stock									
Persistence a		Not determined.							
Degradability	/ ation Potential	Not determined.							
Mobility in Sc		Not determined.							
Other Advers		Not determined.							
		Not determined.							
	Disposal Con								
		e South African Natio	onal Stan	dard for the Assessm	ent of Waste for Landfill Disposal (GN R 635 of				
23 August 20									
		n / Restrictions			R 635 of August 2013.				
Treatment Pr	rior to Disposa	łl –	No	t determined.					

28
28
28
28
ovides
osalto
osal is
sposal
t. miele
ant risk nsport
ispon
rgency
90109
rt, use
zards,
- ,

ection 16: Other Information					
Physical Hazards		Health Hazards	Environmental Hazards		
Explosives	Х	Acute Toxicity: Oral	Х	Acute Toxicity – Acute	Х
Flammable Gases	X	Acute Toxicity: Skin	X	Acute Toxicity – Chronic	X
Flammable Aerosols	X	Acute Toxicity: Inhalation	X		
Oxidizing Gases	X	Skin Corrosion/Irritation	 ✓ 		
Gases Under Pressure	X	Serious Eye Damage/Eye Irritation	 ✓ 		
Flammable Liquids	X	Respiratory Sensitization	X		
Flammable Solids	X	Skin Sensitization	X		
Self-Reactive Substances	X	Germ Cell Mutagenicity	X		
Pyrophoric Liquids	X	Carcinogenicity	✓		
Pyrophoric Solids	X	Toxic To Reproduction	X		
Self-Heating Substances	X	Specific Target Organ Toxicity – Single Exposure	✓		
Substances That, On Contact With Water, Emit Flammable Gases	X	Specific Target Organ Toxicity – Repeated Exposure	~		
Oxidizing Liquids	Х	Aspiration Hazard	Х		
Oxidizing Solids	X				
Organic Peroxides	X				
Corrosive To Metals	X				

KEY	
Applicable	\checkmark
Not applicable	Х

Measurement Details	Measurement Details
Sample Name Average of 'IW2020-0461 - screened'	Measurement Date Time 2020/07/09 09:33:39
SDS 6368	Analysis Date Time 2020/07/09 09:33:39
SOP File Name Default + 60us.msop	Original Record Number 54
Analysis	Analysis
Particle Name Default 1.0	Particle Refractive Index 1.520
Dispersant Name Water	Dispersant Refractive Index 1.320
Particle Absorption Index 1.000	Laser Obscuration 11.95 %
Weighted Residual 0.63 %	Scattering Model Mie
Analysis Model General Purpose	Analysis Sensitivity Normal
Result	Result
Concentration 0.0134 %	Span 2.461
Uniformity 0.763	Result Units Volume
Specific Surface Area 643.9 m ² /kg	Dv (10) 4.35 μm
D [3,2] 8.87 μm	Dv (50) 21.5 μm
D [4,3] 26.7 μm	Dv (90) 57.2 μm
Frequency (compatible)	
8 6 6 2 0 0 0 1 0 1 0 1 0 1 0	10.0 100.0 1,000.0 10,000.0 Classes (μm) 220-0461 -
Result	

Result												
Size (µm)	% Volume Under											
0.0100	0.00	0.0995	0.00	0.991	1.57	9.86	24.76	98.1	99.52	976	100.00	
0.0114	0.00	0.113	0.00	1.13	1.94	11.2	28.07	111	99.96	1110	100.00	
0.0129	0.00	0.128	0.00	1.28	2.33	12.7	31.69	127	100.00	1260	100.00	
0.0147	0.00	0.146	0.00	1.45	2.77	14.5	35.62	144	100.00	1430	100.00	
0.0167	0.00	0.166	0.00	1.65	3.25	16.4	39.90	163	100.00	1630	100.00	
0.0189	0.00	0.188	0.00	1.88	3.78	18.7	44.52	186	100.00	1850	100.00	
0.0215	0.00	0.214	0.00	2.13	4.38	21.2	49.47	211	100.00	2100	100.00	
0.0244	0.00	0.243	0.00	2.42	5.07	24.1	54.74	240	100.00	2390	100.00	
0.0278	0.00	0.276	0.00	2.75	5.86	27.4	60.24	272	100.00	2710	100.00	
0.0315	0.00	0.314	0.00	3.12	6.78	31.1	65.88	310	100.00	3080	100.00	
0.0358	0.00	0.357	0.00	3.55	7.86	35.3	71.53	352	100.00	3500	100.00	
0.0407	0.00	0.405	0.00	4.03	9.13	40.1	77.03	400	100.00			
0.0463	0.00	0.460	0.07	4.58	10.62	45.6	82.19	454	100.00			
0.0526	0.00	0.523	0.20	5.21	12.33	51.8	86.87	516	100.00			
0.0597	0.00	0.594	0.39	5.92	14.29	58.9	90.91	586	100.00			
0.0679	0.00	0.675	0.63	6.72	16.51	66.9	94.21	666	100.00			
0.0771	0.00	0.767	0.91	7.64	18.99	76.0	96.73	756	100.00			
0.0876	0.00	0.872	1.23	8.68	21.73	86.4	98.47	859	100.00			

Measurement Detail						Measurement Details							
	Samp	le Name Avera	ge of 'IW2	020-0462 - scre	ened'		Me	asurement Dat	e Time 20	020/07/09 09:52:	26		
		SDS 6369						Analysis Dat	e Time 20	020/07/09 09:52:	:26		
	SOP Fi	le Name Defau	lt + 60us.n	isop			Ori	ginal Record N					
								.		-			
Analysis						Analysis							
	Partic	le Name Defau	lt 1.0			Particle Refractive Index 1.520							
	Dispersa	nt Name Water				Dispersant Refractive Index 1.330							
Partic	le Absorptio	on Index 1.000				Laser Obscuration 5.58 %							
	-	Residual 0.34 %	6					Scattering	Model M	ie			
	-	is Model Gener						Analysis Sen					
	Analys	Binduci Gener	un unpose					, and your been	Sicility it	onnai			
Result					Result								
	Conce	ntration 0.0079	9%						Span 5.	314			
	Un	iformity 1.536						Resul	t Units Vo	olume			
S	pecific Surfa	ace Area 490.8	m²/kg			Dv (10) 5.03 μm							
		D [3,2] 11.6 µ	ım			Dv (50) 40.6 μm							
		D [4,3] 80.5 µ				Dv (90) 221 μm							
Frequency (compatil	le)												
6 4- 2 2 0- 0.01	1 1 1 1 1 1	111 I I 0.1	1 1 1 1		verage of 'IV	10.0 e Classes (µm) /2020-0462 - /09 09:52:26		11111 100.0		1,000.0	ר די		
Result													
Size (µm) % Volume Uno	er Size (µm)	% Volume Under	Size (µm)	% Volume Under	Size (µm)	% Volume Under	Size (µm)	% Volume Under	Size (µm)	% Volume Under			
	0.0995		0.991	1.27	9.86	15.88	98.1	75.49	976	100.00			
	0.113		1.13	1.64	11.2	17.35	111	78.09	1110	100.00			
	0.128		1.28	2.06	12.7	19.03	127	80.51	1260	100.00			
	00 0.146 00 0.166		1.45 1.65	2.53 3.08	14.5 16.4	20.99 23.29	144 163	82.81 85.03	1430 1630	100.00 100.00			
	0.166		1.65	3.08	16.4	23.29	163	85.03	1830	100.00			
	00 0.214		2.13	4.36	21.2	29.08	211	89.30	2100	100.00			
	0.243		2.42	5.09	24.1	32.61	240	91.32	2390	100.00			
0.0278 0	0 276	0.00	2 7 5	5.86	27.4	36 51	272	93.22	2710	100.00			

0.0215	0.00	0.214	0.00	2.13	4.36	21.2	29.08	211	89.30	2100	100.00	
0.0244	0.00	0.243	0.00	2.42	5.09	24.1	32.61	240	91.32	2390	100.00	
0.0278	0.00	0.276	0.00	2.75	5.86	27.4	36.51	272	93.22	2710	100.00	
0.0315	0.00	0.314	0.00	3.12	6.67	31.1	40.72	310	94.96	3080	100.00	
0.0358	0.00	0.357	0.00	3.55	7.51	35.3	45.14	352	96.49	3500	100.00	
0.0407	0.00	0.405	0.00	4.03	8.39	40.1	49.63	400	97.74			
0.0463	0.00	0.460	0.00	4.58	9.30	45.6	54.08	454	98.69			
0.0526	0.00	0.523	0.09	5.21	10.25	51.8	58.37	516	99.33			
0.0597	0.00	0.594	0.23	5.92	11.24	58.9	62.42	586	99.66			
0.0679	0.00	0.675	0.43	6.72	12.28	66.9	66.15	666	99.88			
0.0771	0.00	0.767	0.67	7.64	13.39	76.0	69.57	756	99.99			
0.0876	0.00	0.872	0.95	8.68	14.58	86.4	72.67	859	100.00			

Micron Scientific (PTY)LTD

Measurement Details	Measurement Details
Sample Name Average of 'IW2020-0463 - screened'	Measurement Date Time 2020/07/09 10:01:56
SDS 6370	Analysis Date Time 2020/07/09 10:01:56
SOP File Name Default + 60us.msop	Original Record Number 62
Analysis	Analysis
Particle Name Default 1.0	Particle Refractive Index 1.520
Dispersant Name Water	Dispersant Refractive Index 1.330
Particle Absorption Index 1.000	Laser Obscuration 15.24 %
Weighted Residual 0.39 %	Scattering Model Mie
Analysis Model General Purpose	Analysis Sensitivity Normal
Result	Result
Concentration 0.0060 %	Span 4.606
Uniformity 1.716	Result Units Volume
Specific Surface Area 1813 m ² /kg	Dv (10) 0.932 μm
D [3,2] 3.15 μm	Dv (50) 16.8 μm
D [4,3] 34.0 μm	Dv (90) 78.3 μm
Frequency (compatible)	
5-7	\sim
4- (%) <i>i</i> s 3-	
Volume Density (%)	

Result												
Size (µm)	% Volume Under											
0.0100	0.00	0.0995	0.00	0.991	10.93	9.86	39.46	98.1	93.65	976	100.00	
0.0114	0.00	0.113	0.00	1.13	12.94	11.2	41.69	111	95.17	1110	100.00	
0.0129	0.00	0.128	0.00	1.28	14.96	12.7	44.10	127	96.32	1260	100.00	
0.0147	0.00	0.146	0.00	1.45	16.94	14.5	46.69	144	97.15	1430	100.00	
0.0167	0.00	0.166	0.00	1.65	18.83	16.4	49.48	163	97.72	1630	100.00	
0.0189	0.00	0.188	0.00	1.88	20.58	18.7	52.47	186	98.10	1850	100.00	
0.0215	0.00	0.214	0.00	2.13	22.16	21.2	55.66	211	98.35	2100	100.00	
0.0244	0.00	0.243	0.00	2.42	23.57	24.1	59.02	240	98.53	2390	100.00	
0.0278	0.00	0.276	0.00	2.75	24.82	27.4	62.54	272	98.69	2710	100.00	
0.0315	0.00	0.314	0.12	3.12	25.97	31.1	66.17	310	98.87	3080	100.00	
0.0358	0.00	0.357	0.39	3.55	27.08	35.3	69.85	352	99.05	3500	100.00	
0.0407	0.00	0.405	0.88	4.03	28.21	40.1	73.53	400	99.27			
0.0463	0.00	0.460	1.61	4.58	29.40	45.6	77.14	454	99.49			
0.0526	0.00	0.523	2.62	5.21	30.70	51.8	80.60	516	99.70			
0.0597	0.00	0.594	3.90	5.92	32.14	58.9	83.85	586	99.85			
0.0679	0.00	0.675	5.40	6.72	33.73	66.9	86.82	666	99.95			
0.0771	0.00	0.767	7.11	7.64	35.48	76.0	89.47	756	100.00			
0.0876	0.00	0.872	8.97	8.68	37.39	86.4	91.75	859	100.00			

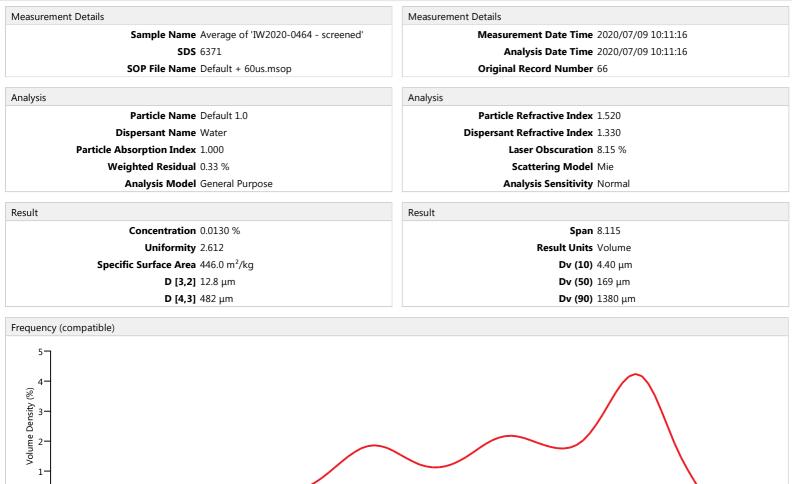
Size Classes (µm) [62] Average of 'IW2020-0463 screened'-2020/07/09 10:01:56

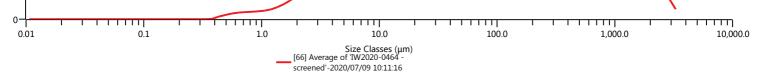
10.0

100.0

1.0

0.1


1-


0

0.01

10,000.0

1,000.0

Result												
Size (µm)	% Volume Under											
0.0100	0.00	0.0995	0.00	0.991	1.15	9.86	19.26	98.1	42.98	976	81.23	
0.0114	0.00	0.113	0.00	1.13	1.38	11.2	20.44	111	44.73	1110	84.71	
0.0129	0.00	0.128	0.00	1.28	1.66	12.7	21.54	127	46.42	1260	87.99	
0.0147	0.00	0.146	0.00	1.45	1.99	14.5	22.55	144	48.05	1430	90.92	
0.0167	0.00	0.166	0.00	1.65	2.40	16.4	23.51	163	49.61	1630	93.43	
0.0189	0.00	0.188	0.00	1.88	2.92	18.7	24.45	186	51.11	1850	95.48	
0.0215	0.00	0.214	0.00	2.13	3.57	21.2	25.39	211	52.58	2100	97.08	
0.0244	0.00	0.243	0.00	2.42	4.36	24.1	26.36	240	54.04	2390	98.29	
0.0278	0.00	0.276	0.00	2.75	5.30	27.4	27.39	272	55.53	2710	99.16	
0.0315	0.00	0.314	0.00	3.12	6.40	31.1	28.51	310	57.08	3080	99.73	
0.0358	0.00	0.357	0.00	3.55	7.64	35.3	29.72	352	58.77	3500	100.00	
0.0407	0.00	0.405	0.00	4.03	9.01	40.1	31.06	400	60.64			
0.0463	0.00	0.460	0.08	4.58	10.47	45.6	32.52	454	62.76			
0.0526	0.00	0.523	0.19	5.21	12.01	51.8	34.10	516	65.17			
0.0597	0.00	0.594	0.35	5.92	13.56	58.9	35.79	586	67.89			
0.0679	0.00	0.675	0.53	6.72	15.10	66.9	37.56	666	70.92			
0.0771	0.00	0.767	0.73	7.64	16.57	76.0	39.37	756	74.21			
0.0876	0.00	0.872	0.94	8.68	17.97	86.4	41.18	859	77.68			

Micron Scientific (PTY)LTD

Measurement Details						Measuren	nent Detail	ls						
	Sample Name	Average	of 'IW2020-0	0465 - scree	ened'	Measurement Date Time 2020/07/09 10:23:00								
	SDS	6372						Analysis Dat	e Time 2020,	/07/09 10:23:00				
	SOP File Name	Default ·	+ 60us.msop				Orig	ginal Record N	umber 70					
Analysis						Analysis								
	Particle Name		1.0					ticle Refractive						
	Dispersant Name					Dispersant Refractive Index 1.330								
	Absorption Index								uration 6.88	%				
N N	Veighted Residual		_					-	Model Mie					
	Analysis Model	General	Purpose					Analysis Sen	sitivity Norm	nal				
Result						Result								
	Concentration	0.0262 %	6						Span 11.17	/4				
	Uniformity	3.486						Resul	t Units Volur	me				
Spe	ecific Surface Area	191.9 m ²	²/kg					I	Dv (10) 16.5	μm				
	D [3,2]	 29.8 μm						I	Dv (50) 108 μ	ım				
	D [4,3]	421 μm							Dv (90) 1220	μm				
Frequency (compatible)													
4- (%) 3- 2- 0- 0- 0.01	Volume Density (%)													
Result														
Size (µm) % Volume Under	Size (µm) % Volume		Size (µm) % Vo			% Volume Under		% Volume Under	Size (µm) %					
0.0100 0.00 0.0114 0.00	0.0995 0.113	0.00	0.991 1.13	0.23 0.27	9.86 11.2	6.89 7.58	98.1 111	48.02 50.71	976 1110	84.58 87.81				
0.0129 0.00	0.128	0.00	1.28	0.35	12.7	8.31	127	52.90	1260	90.73				
0.0147 0.00 0.0167 0.00	0.146 0.166	0.00 0.00	1.45 1.65	0.46 0.60	14.5 16.4	9.09 9.95	144 163	54.64 56.04	1430 1630	93.24 95.28				
0.0187 0.00	0.188	0.00	1.65	0.60	16.4 18.7	9.95	163	56.04	1630	95.28 96.86				
0.0215 0.00	0.214	0.00	2.13	1.03	21.2	12.03	211	58.27	2100	98.04				
0.0244 0.00	0.243	0.00	2.42	1.32	24.1	13.38	240	59.32	2390	98.88				
0.0278 0.00 0.0315 0.00	0.276 0.314	0.00	2.75 3.12	1.66 2.05	27.4 31.1	15.02 17.04	272 310	60.44 61.69	2710 3080	99.46 99.82				
0.0315 0.00	0.357	0.00	3.55	2.46	35.3	19.49	352	63.13	3500	100.00				
0.0407 0.00	0.405	0.00	4.03	2.92	40.1	22.40	400	64.81						
0.0463 0.00	0.460	0.00	4.58	3.40	45.6	25.74	454	66.77						

0.0526

0.0597

0.0679

0.0771

0.0876

0.00

0.00

0.00

0.00

0.00

0.523

0.594

0.675

0.767

0.872

0.00

0.04

0.09

0.14

0.18

5.21

5.92

6.72

7.64

8.68

3.91

4.44

5.01

5.60

6.23

51.8

58.9

66.9

76.0

86.4

29.44

33.37

37.37

41.25

44.85

516

586

666

756

859

69.05

71.67

74.61

77.83

81.20

Micron Scientific (PTY)LTD

Measuren	ment Details						Measuren	nent Detail	S					
		Sample	Name Averag	ge of 'IW20	20-0466 - scre	ened'		Mea	surement Dat	e Time 20	20/07/09 10:31	:38		
			SDS 6373						Analysis Dat	e Time 20	20/07/09 10:31	:38		
		SOP File	Name Defaul	t + 60us.m	sop			Orig	jinal Record N	umber 74				
Analysis							Analysis							
			Name Defaul	t 1.0			Particle Refractive Index 1.520 Dispersant Refractive Index 1.330							
		•	Name Water					Dispers						
		-	Index 1.000						Laser Obscu					
	W	-	sidual 0.80 %				Scattering Model Mie							
		Analysis N	Model Genera	al Purpose					Analysis Sen	sitivity No	ormal			
Result							Result							
		Concent	ration 0.0567	%						Span 2.2	206			
		Unifo	ormity 0.650						Resul	t Units Vo	olume			
	Spe	cific Surface	e Area 111.0 i	m²/kg					ſ	Dv (10) 44	.6 μm			
		D) [3,2] 51.5 μ	m					ſ	Dv (50) 92	7 μm			
		D	[4,3] 1020 µ	เm			Dv (90) 2090 μm							
F														
Frequency	Frequency (compatible)													
-10 8- (%) 4- 2- 2-	-													
0-).01		1 1 0.1		1.0 1.0	1 1 1 1	10.0	1 1 1	100.0	1 1 1	1,000.0	10,000.0		
					[74] A	verage of 'IV	re Classes (μm) V2020-0466 - 7/09 10:31:38				_,	20,000,0		
Result														
	% Volume Under		6 Volume Under		% Volume Under		% Volume Under		% Volume Under		% Volume Under			
0.0100 0.0114	0.00 0.00	0.0995 0.113	0.00 0.00	0.991 1.13	0.31 0.31	9.86 11.2	3.74 4.10	98.1 111	14.71 15.29	976 1110	52.63 59.56			
0.0129	0.00	0.128	0.00	1.28	0.31	12.7	4.48	127	15.82	1260	66.61			
0.0147	0.00	0.146	0.00	1.45	0.33	14.5	4.89	144	16.33	1430	73.44			
0.0167 0.0189	0.00 0.00	0.166 0.188	0.00 0.00	1.65 1.88	0.41 0.52	16.4 18.7	5.31 5.76	163 186	16.82 17.35	1630 1850	79.77 85.39			
0.0215	0.00	0.214	0.00	2.13	0.66	21.2	6.24	211	17.92	2100	90.17			
0.0244	0.00	0.243	0.00	2.42	0.82	24.1	6.76	240	18.58	2390	94.05			
0.0278	0.00	0.276	0.00	2.75	1.00	27.4	7.33	272	19.37	2710	97.00			
0.0315 0.0358	0.00 0.00	0.314 0.357	0.00 0.00	3.12 3.55	1.21 1.43	31.1 35.3	7.94 8.62	310 352	20.33 21.54	3080 3500	98.99 100.00			
0.0407	0.00	0.405	0.00	4.03	1.66	40.1	9.35	400	23.09					
0.0462		0.460	0.07	4.50	1.01	45.0	10.12							

0.0463

0.0526

0.0597

0.0679

0.0771

0.0876

0.00

0.00

0.00

0.00

0.00

0.00

0.460

0.523

0.594

0.675

0.767

0.872

0.07

0.15

0.22

0.29

0.31

0.31

4.58

5.21

5.92

6.72

7.64

8.68

1.91

2.18

2.46

2.75

3.07

3.39

45.6

51.8

58.9

66.9

76.0

86.4

Mastersizer - v3.62

Page 1 of 1

454

516

586

666

756

859

10.13

10.95

11.77

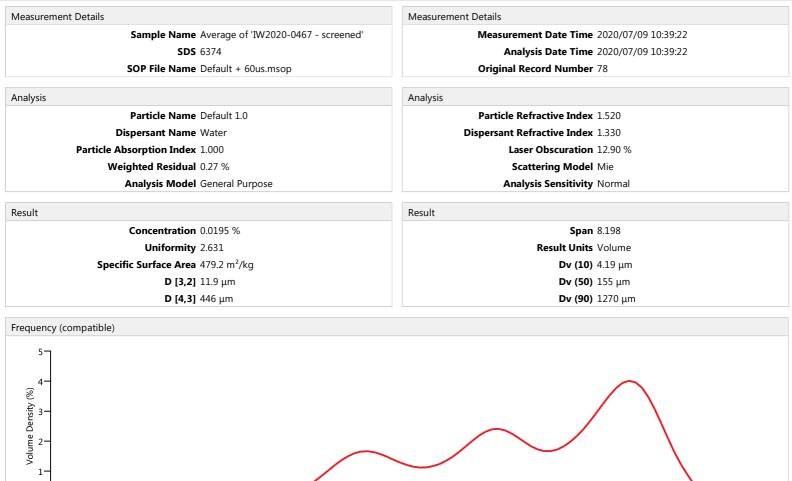
12.58

13.35

14.06

25.10

27.72


31.06

35.23

40.26

46.11

XRD Analytical

0				1 1 1 1 1 1 1 1			
0.01	0.1	1.0	10.0	100.0	1,000.0	10,000.0	3
		[78] A screer	Size Classes (µm) verage of 'IW2020-0467 - ned'-2020/07/09 10:39:22				

Result												
Size (µm)	% Volume Under											
0.0100	0.00	0.0995	0.00	0.991	1.43	9.86	18.47	98.1	44.59	976	83.72	
0.0114	0.00	0.113	0.00	1.13	1.66	11.2	19.47	111	46.24	1110	86.88	
0.0129	0.00	0.128	0.00	1.28	1.92	12.7	20.43	127	47.76	1260	89.78	
0.0147	0.00	0.146	0.00	1.45	2.26	14.5	21.36	144	49.20	1430	92.33	
0.0167	0.00	0.166	0.00	1.65	2.71	16.4	22.30	163	50.58	1630	94.48	
0.0189	0.00	0.188	0.00	1.88	3.27	18.7	23.27	186	51.97	1850	96.22	
0.0215	0.00	0.214	0.00	2.13	3.99	21.2	24.29	211	53.40	2100	97.57	
0.0244	0.00	0.243	0.00	2.42	4.85	24.1	25.41	240	54.92	2390	98.59	
0.0278	0.00	0.276	0.00	2.75	5.85	27.4	26.64	272	56.56	2710	99.31	
0.0315	0.00	0.314	0.00	3.12	6.99	31.1	28.01	310	58.36	3080	99.77	
0.0358	0.00	0.357	0.00	3.55	8.25	35.3	29.53	352	60.35	3500	100.00	
0.0407	0.00	0.405	0.08	4.03	9.58	40.1	31.20	400	62.56			
0.0463	0.00	0.460	0.22	4.58	10.96	45.6	33.02	454	65.01			
0.0526	0.00	0.523	0.39	5.21	12.35	51.8	34.95	516	67.70			
0.0597	0.00	0.594	0.60	5.92	13.71	58.9	36.95	586	70.63			
0.0679	0.00	0.675	0.81	6.72	15.02	66.9	38.96	666	73.77			
0.0771	0.00	0.767	1.02	7.64	16.25	76.0	40.93	756	77.06			
0.0876	0.00	0.872	1.23	8.68	17.40	86.4	42.82	859	80.41			

Measurement Details			Ν	leasurement Detai	ls						
	Sample Name Averag	je of 'IW2020-0468 - scree	ened'	Measurement Date Time 2020/07/09 10:46:44							
	SDS 6375			Analysis Date Time 2020/07/09 10:46:44							
	SOP File Name Defaul	t + 60us.msop		Original Record Number 82							
Analysis			Δ	Analysis							
	Particle Name Defaul	t 1.0		Particle Refractive Index 1.520							
Dis	spersant Name Water			Dispersant Refractive Index 1.330							
Particle Ab	sorption Index 1.000				Laser Obscu	ration 11	32 %				
Wei	ghted Residual 0.40 %				Scattering	Model M	ie				
	Analysis Model Genera	al Purpose			Analysis Sen	sitivity No	ormal				
Result			R	esult							
	Concentration 0.0108	%				Span 2.9	934				
	Uniformity 0.945				Resul	t Units Vo	olume				
Specifi	ic Surface Area 745.8 r	m²/kg			0	Dv (10) 3.3	38 µm				
	D [3,2] 7.66 μr	n			6)v (50) 25	5.2 μm				
	D [4,3] 35.1 μr	n				ov (90) 77	′.3 μm				
Frequency (compatible)	Frequency (compatible)										
8 6 6 4 9 9 9 9 9 9 9 9 9 9 9 9 9											
Result											
Size (µm) % Volume Under	Size (µm) % Volume Under	Size (µm) % Volume Under	Size (µm) % Volur	me Under Size (µm)	% Volume Under	Size (µm)	% Volume Under				
0.0100 0.00	0.0995 0.00	0.991 2.65	9.86	23.31 98.1	94.46	976	100.00				
0.0114 0.00 0.0129 0.00	0.113 0.00 0.128 0.00	1.13 3.26 1.28 3.91	11.2 12.7	25.91 111 28.79 127	96.08 97.27	1110 1260	100.00 100.00				
0.0147 0.00	0.146 0.00	1.45 4.60	14.5	32.00 144	98.13	1430	100.00				
0.0167 0.00	0.166 0.00	1.65 5.34	16.4	35.55 163	98.75	1630	100.00				
0.0189 0.00 0.0215 0.00	0.188 0.00 0.214 0.00	1.88 6.10 2.13 6.88	18.7 21.2	39.45 186 43.70 211	99.20 99.53	1850 2100	100.00 100.00				
0.0244 0.00	0.243 0.00	2.42 7.69	24.1	48.28 240	99.77	2390	100.00				
0.0278 0.00	0.276 0.00	2.75 8.53	27.4	53.14 272	99.92	2710	100.00				

	0.00	0.211	0.00	2.20	0.00		15.7 6		55.55	2100	100.00
0.0244	0.00	0.243	0.00	2.42	7.69	24.1	48.28	240	99.77	2390	100.00
0.0278	0.00	0.276	0.00	2.75	8.53	27.4	53.14	272	99.92	2710	100.00
0.0315	0.00	0.314	0.00	3.12	9.41	31.1	58.20	310	100.00	3080	100.00
0.0358	0.00	0.357	0.00	3.55	10.37	35.3	63.36	352	100.00	3500	100.00
0.0407	0.00	0.405	0.08	4.03	11.41	40.1	68.50	400	100.00		
0.0463	0.00	0.460	0.22	4.58	12.58	45.6	73.49	454	100.00		
0.0526	0.00	0.523	0.45	5.21	13.89	51.8	78.21	516	100.00		
0.0597	0.00	0.594	0.75	5.92	15.37	58.9	82.53	586	100.00		
0.0679	0.00	0.675	1.14	6.72	17.03	66.9	86.36	666	100.00		
0.0771	0.00	0.767	1.59	7.64	18.90	76.0	89.64	756	100.00		
0.0876	0.00	0.872	2.10	8.68	20.99	86.4	92.33	859	100.00		

Measurement Details Measurement Details Sop File Name Average of 'W2020' 0469 - screened' So F File Name Default + 60us.msop Measurement Date Time 2020/07/09 105414 Analysis Det Time 2020/07/09 105414 Original Record Number 86 Analysis Det Time 2020/07/09 105414 Original Record Number 86 Analysis Det Time 2020/07/09 105414 Original Record Number 86 Analysis Meme Default 1.0 Dispersant Name Water Particle Absorption Index 1.000 Particle Refractive Index 1.330 Nanalysis Model General Purpose Particle Refractive Index 1.330 Result Screentration 0.060 % Uniformity 0.696 Specific Stratee Area 1030 m²kg D [3,2] 555 µm D [3,2] 555 µm D [3,2] 555 µm D [3,2] 555 µm D [3,2] 555 µm D [3,2] 655 µm D [3,2] 555 µm D [3,2] 656 Specific Surface Area 1030 m²kg D [3,0] 476 µm V (600) 706 µm D (90) 1680 µm Frequency (compatible) Specific Stratee Area 103 m²kg Specific Stratee Area 103 m²kg Specific Stratee Area 103 m²kg D [3,2] 655 µm D [3,2] 656 Specific Stratee Area 103 m²kg Specific Stratee Area 103													
SDS 6376 SOP File Name Default + 60us.msop Analysis Analysis Date Time 2020/07/09 10:54:14 Original Record Number 86 Analysis Analysis Analysis Particle Rame Default 1.0 Dispersant Name Water Particle Absorption Index 1.000 Weighted Residual 0.59 % Analysis Model General Purpose Particle Refractive Index 1.520 Dispersant Refracti	Measurement Details					Measuren	nent Detai	ls					
Original Record Number 86 Analysis Analysis Analysis Particle Name Default 1.0 Dispersant Name Water Particle Refractive Index 1.320 Dispersant Refractive Index 1.300 User Obscuration 9.40 %. Weighted Residual 0.59 %. Analysis Sensitivity Normal Result Result Concentration 0.0660 %. Particle Refractive Index 1.320 Uniformity 0.696 Span 2.299 Result Span 2.299 Result Uniformity 0.696 Span 2.299 D (10) 47.5 µm D (20) 76.5 µm D (4.3) 808 µm Dv (80) 1680 µm Frequency (compatible) Sec (mm) Image: Sec (mm) Sec (mm) Sec (mm) Sec (mm) Sec (mm) Stec (mm) Sec (mm) Stec (mm) Sec (mm) Stec (mm) Weighted Water Stec (mm) Mathematical Sec (mm) Stec (mm) Sec (mm) Stec (mm) Stec (mm) Stec (mm) </td <td></td> <td colspan="8">Measurement Date Time 2020/07/09 10:54:14</td>		Measurement Date Time 2020/07/09 10:54:14											
Analysis Analysis Particle Name Default 1.0 Dispersant Name Water Particle Absorption Index 1.000 Weighted Residual 0.39 % Analysis Model General Purpose Particle Refractive Index 1.320 Dispersant Refractive Index 1.330 Laser Obscuration 9.40 % Scattering Model Mile Analysis Sensitivity Normal Result Concentration 0.060 % Uniformity 0.696 Specific Jurace Area 103.0 m ² /kg D [3,2] 53.5 µm D [4,3] 808 µm Result Frequency (compatible) Frequency (compatible) Image: Concentration 0.060 % Uniformity 0.696 Specific Jurace Area 103.0 m ² /kg D [3,2] 53.5 µm D [4,3] 808 µm Image: Concentration 0.060 % Uniformity 0.696 Specific Jurace Area 103.0 m ² /kg D [3,2] 53.5 µm D [4,3] 808 µm Frequency (compatible) Image: Concentration 0.060 % Uniformity 0.696 Specific Jurace Area 103.0 m ² /kg D [3,2] 53.5 µm D [4,3] 808 µm Image: Concentration 0.060 % Disc Classes (pm) D [0,00 1.000.		Analysis Date Time 2020/07/09 10:54:14											
Particle Name Default 1.0 Dispersant Name Water Particle Assorption Index 1.520 Dispersant Refractive Index 1.330 Laser Obscuration 9.40 % Scattering Model Mie Analysis Model General Purpose Result Concentration 0.0660 % Uniformity 0.636 Specific Surface Area 103.0 m²/kg D [3,2] 55.5 µm D [4,3] 808 µm Result Frequency (compatible) Image: Concentration 0.0660 % Uniformity 0.636 Specific Surface Area 103.0 m²/kg D [3,2] 55.5 µm D [4,3] 808 µm Result Frequency (compatible) Image: Concentration 0.0660 % Uniformity 0.636 Specific Surface Area 103.0 m²/kg D [3,2] 55.5 µm D [4,3] 808 µm Image: Concentration 0.0660 % Uniformity 0.636 Specific Surface Area 103.0 m²/kg D (3,0) 0.000 0 Frequency (compatible) Image: Concentration 0.0660 % Uniformity 0.630 Concentration 0.0660 % D (10,0) 0.000 0 Image: Concentration 0.0660 % D (10,0) 0.000 0 Frequency (compatible) Image: Concentration 0.0660 % D (10,0) 0.000 0 Image: Concentration 0.0660 % D (10,0) 0.000 0 Result Image: Concentration 0.0660 % D (10,0) 0.000 0 Image: Concentration 0.060 0 Result Image: Concentration 0.060 0 Image: Concentration 0.060 0 Result Image: Concentration 0.060 0 Image: Concentration 0.060 0 B/A Market		Original Record Number 86											
Particle Name Default 1.0 Dispersant Name Water Particle Assorption Index 1.520 Dispersant Refractive Index 1.330 Laser Obscuration 9.40 % Scattering Model Mie Analysis Model General Purpose Result Concentration 0.0660 % Uniformity 0.636 Specific Surface Area 103.0 m²/kg D [3,2] 55.5 µm D [4,3] 808 µm Result Frequency (compatible) Image: Concentration 0.0660 % Uniformity 0.636 Specific Surface Area 103.0 m²/kg D [3,2] 55.5 µm D [4,3] 808 µm Result Frequency (compatible) Image: Concentration 0.0660 % Uniformity 0.636 Specific Surface Area 103.0 m²/kg D [3,2] 55.5 µm D [4,3] 808 µm Image: Concentration 0.0660 % Uniformity 0.636 Specific Surface Area 103.0 m²/kg D (3,0) 0.000 0 Frequency (compatible) Image: Concentration 0.0660 % Uniformity 0.630 Concentration 0.0660 % D (10,0) 0.000 0 Image: Concentration 0.0660 % D (10,0) 0.000 0 Frequency (compatible) Image: Concentration 0.0660 % D (10,0) 0.000 0 Image: Concentration 0.0660 % D (10,0) 0.000 0 Result Image: Concentration 0.0660 % D (10,0) 0.000 0 Image: Concentration 0.060 0 Result Image: Concentration 0.060 0 Image: Concentration 0.060 0 Result Image: Concentration 0.060 0 Image: Concentration 0.060 0 B/A Market	Analysis					Analysis							
Dispersant Name Water Particle Absorption Index 1.000 Sight Absorption Index 1.000 Scattering Model Mie Analysis Model General Purpose Result Result Result Concentration 0.0660 % Uniformity 0.696 Spain 2.299 Result Units Volume Dispersant Refractive Index 1.330 Dispersant Refractive Index 1.330 Dispersant Refractive Index 1.330 Result Spain 2.299 Result Units Volume Dispersant Refractive Index 1.330 Uniformity 0.696 Spain 2.299 Result Units Volume Dispersant Refractive Index 1.300 Properties Dispersant Refractive Index 1.300 Spain 2.299 Result Units Volume Frequency (compatible) Dispersant Refractive Index 1.300 Spain 2.299 Result Units Volume Frequency (compatible) Sea (amp divide) Spain 2.299 Result Units Volume Under 1.000 Spain 2.299 Sea (amp divide) Spain 2.299 Result Units Volume Under 1.000 Spain 2.299 Spain 2.299 Properties Spain 2.299 Spain 2.299 Spain 2.299 Spain 2.299 Spain 2.299 Spain 2.299 Spain 2.299 Spain 2.299 Spain 2.299 Spain 2.299 Spain 2.299													
Particle Absorption Index 1.000 Weighted Residual 0.59 % Analysis Model General Purpose Laser Obscuration 9.40 % Scattering Model Mie Analysis Sensitivity Normal Result Result Span 2.299 Result UnitS Volume D (13,2) 55.5 µm D (14,3) 808 µm Result Frequency (compatible) D (14,3) 808 µm D (14,3) 808 µm Prequency (compatible) Frequency (compatible) Size (am) % Volume Under 0.000 Size (am) % Volume Under 0.000 <td></td> <td colspan="9"></td>													
Stattering Model Mie Analysis Model General Purpose Stattering Model Mie Analysis Sensitivity Normal Result Concentration 0.0600 % Uniformity 0.696 Specific Surface Area 103.0 m?/kg D [3,2] 55.5 µm D [4,3] 808 µm Result Units Volume D (4,3] 808 µm Frequency (compatible) Specific Surface Area 103.0 m?/kg D [3,2] 55.5 µm D [4,3] 808 µm Stattering Model Mie Analysis Sensitivity Normal Frequency (compatible) Specific Surface Area 103.0 m?/kg D [4,3] 808 µm Specific Surface Area 103.0 m?/kg D [4,3] 808 µm Specific Surface Area 103.0 m?/kg D [4,3] 808 µm Specific Surface Area 103.0 m?/kg D (4,3] 808 µm Specific Surface Area 103.0 m?/kg D (4,3] 808 µm Specific Surface Area 103.0 m?/kg D (90) 1680 µm Specific Surface Area 103.0 m?/kg D (4,3] 808 µm Specific Surface Area 103.0 m?/kg D (90) 1680 µm Surface Area 103.0 m?/kg D (90) 1680 µm Specific Surface Area 103.0 m?/kg D (90) 1680 µm Specific Surface Area 103.0 m?/kg D (90) 10.00.0 10.00.		-				-							
Analysis Model General Purpose Analysis Sensitivity Normal Result Result Result 0100000000000000000000000000000000000		-											
Result Result Result Concentration 0.0660 % Uniformity 0.696 Specific Surface Area 103.0 m ² /kg D [3,2] 55.5 µm D [4,3] 808 µm Result Span 2.299 Result Units Volume D v (10) 47.6 µm D v (50) 709 µm D v (50) 709 µm D v (90) 1680 µm Frequency (compatible) Image: Compatible of the state of the		-						-					
Concentration 0.0660 % Uniformity Span 2.29 Result Dital 0.0 0.0 0.0 0.0 0.00 0		Analysis Model Genera	ai Fuipose					Analysis Sen		UTITIAI			
Uniformity 0.696 Result Units Volume Specific Surface Area 103.0 m ² /kg D (10) 47.6 µm D [3,2] 55.5 µm D (50) 709 µm D [4,3] 808 µm D (90) 1680 µm Frequency (compatible)	Result					Result							
Specific Surface Are 103.0 m ² /kg Dv (10) 47.6 µm D [3,2] 55.5 µm Dv (50) 709 µm D [4,3] 808 µm Dv (90) 1680 µm Frequency (compatible) Image: Compatible of the second secon		Concentration 0.0660	%						Span 2.	299			
D [3,2] 55.5 µл Dv (50) 709 µл D (4,3] 808 µл Dv (90) 1680 µл Frequency (compatible)		Uniformity 0.696						Resul	t Units V	olume			
D [4,3] 808 μm Dv (90) 1680 μm Frequency (compatible)	Spec	ific Surface Area 103.0 r	m²/kg					ſ	Dv (10) 4	7.6 µm			
Frequency (compatible) 10 10 10 10 10 10 10 10 10 10 100 100.0 1,000.0 10,00		D [3,2] 55.5 μι	n					[Dv (50) 70)9 μm			
10 3 6 4 2 4 2 4 2 0 0.01 0.01 10 100 10 100 10 100.0 100.0 100.0 <		D [4,3] 808 μr	n			Dv (90) 1680 μm							
10 3 6 4 2 4 2 4 2 0 0.01 0.01 10 100 10 100 10 100.0 100.0 100.0 <	Fraguancy (compatible)												
8 6	Frequency (compatible)												
	10												
0.01 0.1 1.0 10.0 10.0 100.0 100.0 10,000.0 Size Classes (µm) [86] Average of 'IW2020-0469 - screened'-2020/07/09 10:54:14 Result Size (µm) % Volume Under <	Volume Density (%) - 9 - 1									\bigwedge			
Size Classes (µm) [86] Average of 'IW2020-0469 - screened'-2020/07/09 10:54:14 Result Size (µm) % Volume Under Siz	0-1		1 1 1 1 1	111 1	1 1 1 1	TTTT T							
Result Size (µm) % Volume Under Size (µm) % Volume Under<	0.01	0.1		[86] A	verage of 'IW	e Classes (µm) 2020-0469 -		100.0		1,000.0	10,000.0		
Size (µm) % Volume Under Size (µm)													
0.0100 0.00 0.0995 0.00 0.991 0.22 9.86 3.70 98.1 15.42 976 66.94	Result												
	Size (µm) % Volume Under	Size (µm) % Volume Under	Size (µm) %	% Volume Under	Size (µm)	% Volume Under	Size (µm)	% Volume Under	Size (µm)	% Volume Under			
0.0114 0.00 0.113 0.00 1.13 0.22 11.2 4.05 111 16.35 1110 73.55	0.0100 0.00 0.0114 0.00	0.0995 0.00 0.113 0.00	0.991 1.13	0.22 0.22	9.86 11.2	3.70 4.05	98.1 111	15.42 16.35	976 1110	66.94 73.55			

0120 (pill)	is relative ender	Bize (pill)	i volume onder	5120 (pill)	i volume onder	5120 (µ111)	so rolanie onaei	5120 (pill)	so rolanie onaei	oneo (pini)	i folanie onaei	
0.0100	0.00	0.0995	0.00	0.991	0.22	9.86	3.70	98.1	15.42	976	66.94	
0.0114	0.00	0.113	0.00	1.13	0.22	11.2	4.05	111	16.35	1110	73.55	
0.0129	0.00	0.128	0.00	1.28	0.22	12.7	4.42	127	17.25	1260	79.59	
0.0147	0.00	0.146	0.00	1.45	0.24	14.5	4.80	144	18.12	1430	84.84	
0.0167	0.00	0.166	0.00	1.65	0.32	16.4	5.19	163	18.99	1630	89.19	
0.0189	0.00	0.188	0.00	1.88	0.43	18.7	5.60	186	19.89	1850	92.64	
0.0215	0.00	0.214	0.00	2.13	0.56	21.2	6.04	211	20.83	2100	95.30	
0.0244	0.00	0.243	0.00	2.42	0.72	24.1	6.50	240	21.88	2390	97.26	
0.0278	0.00	0.276	0.00	2.75	0.91	27.4	7.00	272	23.10	2710	98.66	
0.0315	0.00	0.314	0.00	3.12	1.13	31.1	7.57	310	24.61	3080	99.56	
0.0358	0.00	0.357	0.00	3.55	1.36	35.3	8.20	352	26.53	3500	100.00	
0.0407	0.00	0.405	0.00	4.03	1.60	40.1	8.92	400	29.02			
0.0463	0.00	0.460	0.02	4.58	1.86	45.6	9.71	454	32.22			
0.0526	0.00	0.523	0.09	5.21	2.13	51.8	10.59	516	36.25			
0.0597	0.00	0.594	0.16	5.92	2.41	58.9	11.52	586	41.15			
0.0679	0.00	0.675	0.22	6.72	2.71	66.9	12.50	666	46.87			
0.0771	0.00	0.767	0.22	7.64	3.03	76.0	13.48	756	53.26			
0.0876	0.00	0.872	0.22	8.68	3.35	86.4	14.47	859	60.06			
1												

