Capilano Break Head Tank and Energy Recovery Facility

Capilano Break Head Tank and Energy Recovery Facility

Publication: Canadian Consulting Engineer
Issue: October/November 2016
Issue Title: 2016 Canadian Consulting Engineering Awards

The Capilano Break Head Tank and Energy Recovery Facility (BHT & ERF) is a vital link in the Seymour-Capilano Water Filtration System that supplies treated potable water to the cities of Vancouver, North Vancouver, and Burnaby.

Knight Piésold designed and commissioned the BHT & ERF, which dissipates excess energy in the water flowing from the Seymour-Capilano filtration plant and recovers that energy to generate electricity. The facility has one of the largest energy recovery turbines in a municipal treated potable water system in North America.

Located adjacent to the Capilano Reservoir and the Cleveland Dam, the facility is at the terminus of a 7-km-long, gravity-driven tunnel from the filtration plant. Because the filtration plant is 30 metres higher in elevation, the gravity-fed treated water passing through the tunnel reaches excess pressures. Knight Piésold worked closely with Metro Vancouver to create innovative solutions at the BHT & ERF. The plant enables water to be distributed to consumers in the cities, while concurrently generating electricity that partially offsets the energy consumed by one 2,000 HP pump at the Capilano Pump Station.

The new facility can either dissipate the excess water pressure through pressure reducing valves, or it can convert the excess pressure and flow into electricity through a hydroelectric turbine. This energy, which would otherwise be lost, is expected to generate enough electricity, equivalent to powering up to 1,000 homes, to reduce Metro Vancouver’s total energy consumption by approximately 9,600 MWh/year.

 

Download the full article.

Download

Perspectivas recientes

Abril 2024
Synthetic Rock Mass Modeling of Progressive Unravelling and Overall Slope Stability Using the Discrete Element Method
Abril 2024
Operational Slope Stability Risk Management for Large Open Pits at the Mount Milligan Mine – A Case Study
Abril 2024
Risk and Informed Approach to TSF Design and Operation
Febrero 2024
Empoderamiento y Resiliencia
Enero 2024
Balancing Act: Water Usage Management Vital for a Sustainable Future
Enero 2024
A Difficult Balance Between Engineering, Environmental, Social and Economic Aspects
Noviembre 2023
Knight Piésold Commences with the ESIA for Haib Copper
Noviembre 2023
Insights from the Compilation and Critical Assessment of Breach and Runout Characteristics from Historical Tailings Dam Failures: Implications for Numerical Modelling
Noviembre 2023
Earthquake-induced Deformation Analysis of a TSF Undergoing Tailings Reprocessing
Noviembre 2023
Case Study: Approach to Determining the Risk Mitigation Priority of a Historic TSF in North America
Octubre 2023
Data Management and Insights for Effective Tailings Storage Facility Management
Octubre 2023
The Role of Sensitivity Analysis in Selecting Dam Breach Parameters
Octubre 2023
Influence of Increased Confining Stress on Undrained Behavior of Tailings: A Case History at the Candelaria Mine
Octubre 2023
The Re-use of Existing Bituminous Stabilised Materials for the Rehabilitation of National Route 7 - Case Study
Septiembre 2023
Transición energética para gerentes de mina
Agosto 2023
Interview: Guillermo Barreda, Gerente General, Knight Piésold Perú
Julio 2023
Selection of Soil Shear Strength Parameters Based on Integrated In Situ Tests, Lab Tests and Numerical Calibration Approach
Junio 2023
Leveraging Knowledge and Experience of a Well-Formed Independent Tailings Review Board to Enhance Tailings Facility Safety
Mayo 2023
Is the Implementation of Dry Stacking for Tailings Storage Increasing? A Southern African Perspective
Febrero 2023
Canadian Consulting Engineer's Lifetime Achievement Awards: Jeremy Haile