Investigation of Sediment Transport Through a Run-of-River Hydroelectric Project

Investigation of Sediment Transport Through a Run-of-River Hydroelectric Project

Author: Violeta Martin, Michael Pullinger, Alana Shewan, Nathan Smith
Conference: HydroVision International 2014
Date: July 22-25, 2014

A 25 MW run-of-river hydroelectric project is proposed in coastal British Columbia, Canada. Baseline studies identified that the bedload sediment transport rate in the project area is relatively low, and consequently, interruption of bed material replenishment in the reaches downstream of the intake represents an environmental concern.

A prerequisite for the successful design of the proposed project includes passing of the spawning size gravel through the intake facility during the period of headpond sediment infilling. A sluice gate has been incorporated in the intake structure to enable the sluicing of sediment. Numerical modelling was undertaken to aid with the intake design and to determine the sediment transport efficiency through the headpond. Hydrodynamic modelling techniques (1D, 2D and CFD) were combined to assess the proposed design and provide an overview of water depths, velocities and bed shear stresses along with the potential for gravel mobility through the headpond reach both before and after the construction of the intake.

 

Download the full technical paper.

Download

Perspectivas recientes

Octubre 2025
2025 CCE Awards Showcase: Salton Sea Species Conservation Habitat Project
Septiembre 2025
Klamath River Renewal Project - Dam Breach Analysis Used for Designing the Final Breach of the Iron Gate Dam
Septiembre 2025
Klamath River Renewal Project - Optimization of the Iron Gate Dam Historic Diversion Tunnel Using CFD Analysis to Support Reservoir Drawdown
Septiembre 2025
Klamath River Renewal Project - Design of Dam Modification for Reservoir Drawdown, River Diversion and Dam Removal of the Copco No. 1 Dam
Septiembre 2025
Drawdown Modelling of Four Reservoirs on the Klamath River to Support Hydroelectric Facility Decommissioning
Septiembre 2025
Laying Groundwork for Future Mining: Infrastructure Support by Knight Piésold
Septiembre 2025
Lessons Learned in the Interpretation of SCPT on a Tailings Facility Using the CSSM Framework
Septiembre 2025
Challenges of Tailings Transport Pumping Systems in Negative Static Head Applications
Septiembre 2025
Hydraulic Evaluation of Tailings Transport Systems in Mountainous Terrain: Density Wave Analysis
Septiembre 2025
The Role of Rheology Tests in the Design and Operation of Long-Distance Slurry Transport Systems
Agosto 2025
The Evolution of Structural Domains from Scoping Study to Operations for the Meadowbank Mine – Amaruq Site
Agosto 2025
Safe Dams, Straight Talk: The Knight Piésold Difference
Julio 2025
Knight Piésold Zambia: Building a Future of Engineering Brilliance and Local Empowerment
Julio 2025
Water Engineering for Modern Mining: Bridging Mining with Sustainability
Junio 2025
The Essence of Material Compatibility in Advanced Barrier Systems of Existing TSFs
Junio 2025
Inverted Barriers in Tailings Storage Facilities: Lessons Learnt
Junio 2025
Prioritizing the Mitigation of Legacy Geomechanical Mine Hazards Using a Risk-Based Approach
Mayo 2025
Knight Piésold: Sustainable Projects in DRC Through Baseline Studies
Abril 2025
Advancements in Geotechnical Investigations for the Characterisation of Upstream Tailings Dams in SA
Noviembre 2024
Knight Piésold: Commitment to African Excellence