State of the Art Thermal Analysis for Neckartal Dam

State of the Art Thermal Analysis for Neckartal Dam

Author: R.P. Greyling, C. Zhang
Conference: AFRICA 2017
Date: March 14-16, 2017

INTRODUCTION
The Neckartal Dam Project is currently under construction on the Fish River near Keetmanshoop in Namibia. The main purpose of the dam is to form an impoundment of 857 million m3 that will supply irrigation water to 5000 ha of agricultural development in the Karas Region. The outlet works at the dam is also equipped with a mini hydropower facility (3MW), which generates from the ecological releases made.

The dam wall is a 78,5m high mass gravity structure, aligned on a curved upstream axis and constructed using a zoned roller compacted concrete (RCC) mix. The crest length measures approximately 520m from abutment to abutment. The dam is equipped with a 395m long uncontrolled ogee spillway crest, which is divided into two segments. The main spillway defining full supply level (FSL) at 787,5 mASL is 290m long, and caters for flood peaks between the 5 to 10-year AEP (Annual Exceedance Probability) flood event. The raised spillway segment at 789,9 mASL is 105m long, positioned on the right flank for passage up to the SED (Safety Evaluation Discharge) and was specifically designed to reduce flow down the abutment that caused circulating flow downstream of the apron.

The dams structural section is a conventional gravity profile with sloped upstream face, 1:0,2 (V:H) and a stepped downstream face, defined on a slope of 1:0,75 (V:H). The dam is presently under construction by Salini Impregilo and will contain some 900 000 m3 of RCC upon construction completion.

The project site is located in a semi-arid region, known for its hot desert climate with long, very hot summers and moderate to warm winters. Average monthly temperatures vary over approximately 14ºC throughout the year between winter and summer. Considering this temperature variation and owing to the size and significance of the structure, strict temperature controls are being enforced, achieved by restricting the allowable RCC placement temperature to 28ºC by means of a dedicated aggregate chilling plant.

In this paper, the authors present a summary of the related thermal analyses applied for the design of Neckartal  Dam, undertaken to determine the magnitude of the anticipated thermal stresses that will develop and ultimately, to evaluate the potential for cracking within the RCC dam. In this manner, the typical approach and techniques required for a transient thermal and stress analysis of a major RCC dam is demonstrated.

 

Download the full technical paper.

Download

 

Perspectivas recientes

Octubre 2025
2025 CCE Awards Showcase: Salton Sea Species Conservation Habitat Project
Septiembre 2025
Klamath River Renewal Project - Dam Breach Analysis Used for Designing the Final Breach of the Iron Gate Dam
Septiembre 2025
Klamath River Renewal Project - Optimization of the Iron Gate Dam Historic Diversion Tunnel Using CFD Analysis to Support Reservoir Drawdown
Septiembre 2025
Klamath River Renewal Project - Design of Dam Modification for Reservoir Drawdown, River Diversion and Dam Removal of the Copco No. 1 Dam
Septiembre 2025
Drawdown Modelling of Four Reservoirs on the Klamath River to Support Hydroelectric Facility Decommissioning
Septiembre 2025
Laying Groundwork for Future Mining: Infrastructure Support by Knight Piésold
Septiembre 2025
Lessons Learned in the Interpretation of SCPT on a Tailings Facility Using the CSSM Framework
Septiembre 2025
Challenges of Tailings Transport Pumping Systems in Negative Static Head Applications
Septiembre 2025
Hydraulic Evaluation of Tailings Transport Systems in Mountainous Terrain: Density Wave Analysis
Septiembre 2025
The Role of Rheology Tests in the Design and Operation of Long-Distance Slurry Transport Systems
Agosto 2025
The Evolution of Structural Domains from Scoping Study to Operations for the Meadowbank Mine – Amaruq Site
Agosto 2025
Safe Dams, Straight Talk: The Knight Piésold Difference
Julio 2025
Knight Piésold Zambia: Building a Future of Engineering Brilliance and Local Empowerment
Julio 2025
Water Engineering for Modern Mining: Bridging Mining with Sustainability
Junio 2025
The Essence of Material Compatibility in Advanced Barrier Systems of Existing TSFs
Junio 2025
Inverted Barriers in Tailings Storage Facilities: Lessons Learnt
Junio 2025
Prioritizing the Mitigation of Legacy Geomechanical Mine Hazards Using a Risk-Based Approach
Mayo 2025
Knight Piésold: Sustainable Projects in DRC Through Baseline Studies
Abril 2025
Advancements in Geotechnical Investigations for the Characterisation of Upstream Tailings Dams in SA
Noviembre 2024
Knight Piésold: Commitment to African Excellence