The Application of Rubble Masonry Concrete (RMC) Construction for African Dams and Small Hydropower Projects

The Application of Rubble Masonry Concrete (RMC) Construction for African Dams and Small Hydropower Projects

Author: R. Greyling, E. Scherman, S. Mottram
Conference: 87th Annual Meeting of the International Commission on Large Dams
Date: June 9-14, 2019

ABSTRACT
The use of Rubble Masonry Concrete (RMC) for the construction of small to medium sized dams is becoming increasingly attractive within the African context. Through recent successful developments in South Africa and the Democratic Republic of the Congo (DRC), RMC designs and construction techniques have been advanced. For projects where labour intensive construction approaches are preferred, RMC application provides the necessary skills training and job creation to regions that are desperately underemployed. From water supply projects in rural areas to remote run of river hydropower schemes, RMC offers a cost-effective, low-maintenance, unskilled labour-based, simple dam construction technology, resulting in a very robust lifelong asset that meets international dam safety standards. This paper and presentation will cover the design methods and standards applied to recent projects that have incorporated RMC weirs and the construction techniques that were successfully implemented. Case studies of RMC Dams constructed for water supply reservoirs and a remote (11 MW) hydroelectric power project will be presented and discussed.

 

Download the full technical paper.

Download

Perspectivas recientes

Octubre 2025
2025 CCE Awards Showcase: Salton Sea Species Conservation Habitat Project
Septiembre 2025
Klamath River Renewal Project - Dam Breach Analysis Used for Designing the Final Breach of the Iron Gate Dam
Septiembre 2025
Klamath River Renewal Project - Optimization of the Iron Gate Dam Historic Diversion Tunnel Using CFD Analysis to Support Reservoir Drawdown
Septiembre 2025
Klamath River Renewal Project - Design of Dam Modification for Reservoir Drawdown, River Diversion and Dam Removal of the Copco No. 1 Dam
Septiembre 2025
Drawdown Modelling of Four Reservoirs on the Klamath River to Support Hydroelectric Facility Decommissioning
Septiembre 2025
Laying Groundwork for Future Mining: Infrastructure Support by Knight Piésold
Septiembre 2025
Lessons Learned in the Interpretation of SCPT on a Tailings Facility Using the CSSM Framework
Septiembre 2025
Challenges of Tailings Transport Pumping Systems in Negative Static Head Applications
Septiembre 2025
Hydraulic Evaluation of Tailings Transport Systems in Mountainous Terrain: Density Wave Analysis
Septiembre 2025
The Role of Rheology Tests in the Design and Operation of Long-Distance Slurry Transport Systems
Agosto 2025
The Evolution of Structural Domains from Scoping Study to Operations for the Meadowbank Mine – Amaruq Site
Agosto 2025
Safe Dams, Straight Talk: The Knight Piésold Difference
Julio 2025
Knight Piésold Zambia: Building a Future of Engineering Brilliance and Local Empowerment
Julio 2025
Water Engineering for Modern Mining: Bridging Mining with Sustainability
Junio 2025
The Essence of Material Compatibility in Advanced Barrier Systems of Existing TSFs
Junio 2025
Inverted Barriers in Tailings Storage Facilities: Lessons Learnt
Junio 2025
Prioritizing the Mitigation of Legacy Geomechanical Mine Hazards Using a Risk-Based Approach
Mayo 2025
Knight Piésold: Sustainable Projects in DRC Through Baseline Studies
Abril 2025
Advancements in Geotechnical Investigations for the Characterisation of Upstream Tailings Dams in SA
Noviembre 2024
Knight Piésold: Commitment to African Excellence