Design and Construction of the 45 MW Kokish River Hydroelectric Project in British Columbia, Canada

Design and Construction of the 45 MW Kokish River Hydroelectric Project in British Columbia, Canada

Author: Egbert J. Scherman, Sam R. Mottram
Conference: HydroVision International 2014
Date: July 22-25, 2014

This presentation will cover the design innovations and lessons learned from the detailed design and construction of the Kokish River Hydroelectric Project recently constructed in the northern part of Vancouver Island located in British Columbia, Canada. This hydroelectric facility is a private sector development by Kwagis Power, a limited partnership of Brookfield Renewable Energy Group and the ‘Namgis First Nation that was awarded an energy purchase agreement by BC Hydro in an open call for clean energy. The project will generate up to 45 MW of clean renewable energy that will be delivered to the British Columbia electrical grid, with an annual energy production capacity of roughly 140 GWh, enough electricity to power close to 13 000 homes.

The Kokish River Hydroelectric project is a run-of-river project with a maximum design generation flow of 25 m³/s and operating head of 238 m. Peter Kiewit Infrastructure Co. was awarded an EPC Contract for the design and construction of the project with Knight Piésold Ltd. appointed the Design Engineer for the project.

The terrain, climate and permitting constraints presented numerous challenges that were all overcome with some innovative design solutions and a close working relationship between the Owner, Contractor and Design Team. These included:

  • Dealing with migratory Salmon and Stealhead that are present throughout the diversion reach of the project, both during construction diversion and operation;
  •  A diversion weir with the world’s largest capacity Coanda screen capable of regulating water flow depth over the screen to ensure emerging salmon fry safe passage over the screens;
  • A 70 metre long vertical slotted fish ladder that allows continuous migration around the diversion weir for both resident trout populations and migrating salmon;
  • Hydraulic model testing of the entire diversion weir, intake structure and fish ladder;
  • A 1 474 m long buried HDPE low pressure penstock connected to a 7 703 m long
    buried, high pressure steel penstock, using soil restraint to eliminate expensive
    concrete anchor blocks;
  • A surface powerhouse housing four vertical axis six?jet Pelton type turbine-generator units capable of handling the long duration flow ramping rates associated with the project;
  • A Powerhouse tailrace channel fish fence, designed to prevent upstream migrating Salmon and Steelhead from entering the tailrace; and
  • A sophisticated in-stream flow measuring and flow ramping protocols.

 

Download the full technical paper.

Download

Recent Insights

November 2024
Design of a Co-disposal Facility for Thickened Tailings and Potentially Acid-generating Waste Rock
November 2024
Compaction Sensitivity in Tailings Stack Infiltration Modeling: Unsaturated Properties Uncertainty Analysis
November 2024
Volumes of Dam Material Mobilized by Erosion During Tailings Dam Failure Events
October 2024
Estudio de rotura de una presa de jales en la zona centro-norte de México
September 2024
Influence of Pre-Existing Mobilized Zones on B3 Cave Propagation and Initial Subsidence at the New Afton Mine
September 2024
Importance of Indigenous Community Engagement related to ARD/ML and Long-Term Water Quality
September 2024
Effective Assessment of ARD/ML Potential for Non-Mining Infrastructure Projects
August 2024
CESA Aon Engineering Excellence Awards 2024: Kikagati Hydropower Plant
July 2024
Interview: Mario Lazo Emparanza, Regional Manager, Knight Piésold Chile
July 2024
Visionary Leadership: Driving Engineering Excellence in Africa with Vishal Haripersad
June 2024
Concept Feasibility and Predicted Behavior of Mining a Rock Tower with Drill-and-Blast Undermining Using Dynamic Three-Dimensional Discontinuum Numerical Models
June 2024
Estimating Shear Stress within a Clay Foundation Using the Burgers-Creep Model
June 2024
Laboratory Study of Manganese Mining Overburden Mixed with Lime as a Paving Subbase Layer
May 2024
Knight Piésold: Ensuring African Excellence in the DRC
May 2024
Wild Coast N2 Highway Project Taking Shape
May 2024
Interview: Guillermo Barreda, Gerente General, Knight Piésold Perú
April 2024
Risk Mitigation through Design Optimization Utilizing Seasonal Effects under Arctic Conditions at the Amaruq Mine
April 2024
Synthetic Rock Mass Modeling of Progressive Unravelling and Overall Slope Stability Using the Discrete Element Method
April 2024
Operational Slope Stability Risk Management for Large Open Pits at the Mount Milligan Mine – A Case Study
April 2024
Risk and Informed Approach to TSF Design and Operation