Design of the Box Canyon Scheme

Design of the Box Canyon Scheme

Publication: International Journal on Hydropower & Dams
Issue: Issue Four, August 2017

The 16 MW Box Canyon hydroelectric project ranks among the most hydraulically complex of any run-of-river hydro project in North America, if not the world. The project, which is located in the McNab Creek watershed, 40 km northwest of Vancouver, British Columbia, has nine intake structures on different creeks and tributaries. All nine feed into a single, high-pressure penstock that directs water to the powerhouse containing a single six-jet vertical axis Pelton generating unit.

The owner, Box Canyon Hydro Corp (a subsidiary of Elemental Energy Inc.) retained Knight Piésold Ltd to assist with:

  • concept development, optimization, environmental assessment, and permitting;
  • detailed design; and,
  • operational monitoring of the facility.

Initial investigations began in 2004, at which time the project concept was a 7 MW facility with a single intake on Box Canyon creek. Through optimization studies, which included site investigations and detailed hydrological studies, Knight Piésold revised the design to the current 16 MW arrangement. The design required addressing hydraulic, waterhammer and environmental flow release complexities, which are not typical for a single intake, run-of-river hydro project.

The project is within the traditional territory of the Squamish Nation, a valued partner on the project, and includes intake structures on three main tributaries to McNab Creek (Box Canyon, Marty, and Cascara Creeks) as well as six minor tributary diversions. Each intake is designed to meet unique water licence conditions that are intended to address the various hydrology, river morphology, and fish species distributions along the creeks and tributaries. The general arrangement and a schematic of the project are shown in Figs. 1 and 2. Key components of the project are highlighted in the photographs, and details for the major components of the project are summarized in the Table.


Download the full article.


Recent Insights

February 2024
Empowerment and Resilience
January 2024
Balancing Act: Water Usage Management Vital for a Sustainable Future
January 2024
A Difficult Balance Between Engineering, Environmental, Social and Economic Aspects
November 2023
Knight Piésold Commences with the ESIA for Haib Copper
November 2023
Insights from the Compilation and Critical Assessment of Breach and Runout Characteristics from Historical Tailings Dam Failures: Implications for Numerical Modelling
November 2023
Earthquake-induced Deformation Analysis of a TSF Undergoing Tailings Reprocessing
November 2023
Case Study: Approach to Determining the Risk Mitigation Priority of a Historic TSF in North America
October 2023
Data Management and Insights for Effective Tailings Storage Facility Management
October 2023
The Role of Sensitivity Analysis in Selecting Dam Breach Parameters
October 2023
Influence of Increased Confining Stress on Undrained Behavior of Tailings: A Case History at the Candelaria Mine
October 2023
The Re-use of Existing Bituminous Stabilised Materials for the Rehabilitation of National Route 7 - Case Study
September 2023
Transición energética para gerentes de mina
August 2023
Interview: Guillermo Barreda, Gerente General, Knight Piésold Perú
July 2023
Selection of Soil Shear Strength Parameters Based on Integrated In Situ Tests, Lab Tests and Numerical Calibration Approach
June 2023
Leveraging Knowledge and Experience of a Well-Formed Independent Tailings Review Board to Enhance Tailings Facility Safety
May 2023
Is the Implementation of Dry Stacking for Tailings Storage Increasing? A Southern African Perspective
February 2023
Canadian Consulting Engineer's Lifetime Achievement Awards: Jeremy Haile
February 2023
Geotechnical Characterization of Collapsible Salty Sands Subjected to Monotonic and Cyclic Loadings – A Case Study for Areas with High Seismicity
November 2022
Application of the 3D Limit Equilibrium Method in Tailings Dam Breach Analysis
November 2022
Evaluation of Tailings Behaviour for Dam Breach Assessments