State-of-the-art Method for Estimating Long-term Hydroclimatic Conditions for Tailing Dam Water Management and Dam Safety Planning

State-of-the-art Method for Estimating Long-term Hydroclimatic Conditions for Tailing Dam Water Management and Dam Safety Planning

Authors: Weitao Nick Rong, Jaime Cathcart
Conference: CDA 2022 Annual Conference
Date: October 17-19, 2022

ABSTRACT

Water management planning that considers a wide range of climatic conditions is crucial for dam safety. Quantifying the climatic range, however, poses a challenge since site climate records are generally much shorter than what is needed to account for possible climate variability. To reduce the uncertainty of long-term climate estimates for mine sites, regional climate records are typically used to represent mine conditions, often with adjustments according to correlations with short-term site data. Long-term regional datasets, however, may not be available, or they may not exhibit similar hydroclimatic conditions to those of a mine site because differences may result from various topographic factors such as aspect, elevation, and distance to site. Furthermore, regional records may have data gaps, may be of unknown quality, or may not be concurrent with the site data.

State-of-the-art global reanalysis products such as ECMWF ReAnalysis 5 (ERA5) can help reduce the gap between what practicing professionals need (long-term climate estimates) and what they typically have (short-term site\ measurements). Reanalysis products result from combining past observations (collected from various sources such ground stations and earth observation satellites) with model results (weather model hindcasting) to generate consistent time series of multiple climate variables for the period of 1979 to present. Reanalysis products provide complete and consistent data, which can take the place of or supplement regional data. These products come in the form of gridded data that represent average conditions for areas with 8 to 32 km spacing, so similar to conventional regional data, they must be bias-corrected to site observed data to generate reliable long-term estimates of hydroclimatic conditions for a particular site.

Probability-based bias-correction (BC) techniques such as the quantile mapping (QM) method are widely used to bridge the gap between global climate models (GCMs) and local observations in climate change related research, and similarly can be used to bias-correct reanalysis products, though this is not common in the mining industry.

This paper presents a case study of the use of a reanalysis product (ERA5) and a probability-based BC method to develop long-term climate values for a mine site with short-term climate records. The results demonstrate that this state-of-the-art approach can produce reasonable long-term estimates of hydroclimatic conditions for a region where regional observations are scarce. Use of such a state-of-the-art approach can facilitate mine water management planning and increase dam safety by improving estimates of historical hydroclimatic variability.

 

Download the full paper.

Download

Recent Insights

November 2022
Application of the 3D Limit Equilibrium Method in Tailings Dam Breach Analysis
November 2022
Evaluation of Tailings Behaviour for Dam Breach Assessments
November 2022
Tailings Improvement by Stress-Densification from Waste Rock Capping
November 2022
Transforming Tailings Management Systems toward Alignment with the GISTM: A Case History
October 2022
Managing Excessive Pit Wall Deformation of Weak Rock Mass
August 2022
Observed Subsidence Progression at New Afton Mine in Response to Lift 1 Mining
June 2022
Hydrometric Monitoring and Effluent Discharge Mixing in Challenging Natural Conditions
May 2022
Inundation Modelling of Non-Newtonian Tailings Dam Breach Outflows
May 2022
Video: Tailings Management Compliancy Picks Up Momentum
May 2022
A Catch up with...Richard Elmer
February 2022
Engineer of Record Services for Tailings Facilities
November 2021
Knight Piésold's Projects Commended at Prestigious Awards
November 2021
Advances in Ensuring Tailings Dam Safety
November 2021
Gearing Up for Growth in Zambia
October 2021
Climate Change Effects on Rainfall Extremes and Implications for Highway Drainage Structures
October 2021
Knight Piésold, aliado de la minería sustentable
September 2021
Knight Piésold Chile enfoque personalizado e integral de trabajo al estilo boutique
September 2021
Engineering the Future: The Profile of the Modern Engineer
September 2021
Company Uses Innovative Ideas in Municipal Project